Design and train a high-performing multilayer perceptron in Julia and FluxML that accurately classifies MNIST handwritten digits in 10 classes
Neural Network Architecture
- Input Layer Nodes: 784
- Hidden Layers: 3
- Hidden Layer Nodes: [25, 25, 25]
- Output Layer Nodes: 10
Hyperparameters
- Learning Rate (
$\alpha$ ): 0.1 - Momentum (
$\psi$ ): 0.0001 - Weight Decay (
$\lambda$ ): 0.0004 - Batch Size: 250
Training
- Epochs: 1000
- Loss Function: Cross Entropy
- Optimizer: Gradient Descent ($\alpha$, $\psi$)
- Regularizer: L2 (Weight Decay)
Test Accuracy: 96.46%