Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Docs for not using a DataFrame #454

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions docs/src/examples.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,62 @@ julia> round.(predict(ols), digits=5)
6.83333
```

### Without data as a DataFrame
Because a named tuple follows common table-interface defined in `Tables.jl`
(which is the one followed by a DataFrame), the problem can also be specified
with data in a named tuple as opposed to a `DataFrame`:
```jldoctetst
julia> using GLM

julia> X=[1,2,3]
3-element Vector{Int64}:
1
2
3

julia> Y=[2,4,7]
3-element Vector{Int64}:
2
4
7

julia> data = (;X, Y) # Equivalent to (X=X, Y=Y)
(X = [1, 2, 3], Y = [2, 4, 7])

julia> lm(@formula(Y~X), data)
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}}}}, Matrix{Float64}}

Y ~ 1 + X

Coefficients:
─────────────────────────────────────────────────────────────────────────
Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
─────────────────────────────────────────────────────────────────────────
(Intercept) -0.666667 0.62361 -1.07 0.4788 -8.59038 7.25704
X 2.5 0.288675 8.66 0.0732 -1.16797 6.16797
─────────────────────────────────────────────────────────────────────────
```

### Without intercept
To make a fit without an intercept (Going through `(0, 0)`), one can specify the fomula as follows:
```jldoctest
julia> X=[1,2,3]; Y=[2,4,7]; data = (;X, Y)
(X = [1, 2, 3], Y = [2, 4, 7])

julia> lm(@formula(Y~0+X), data)
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}}}}, Matrix{Float64}}

Y ~ 0 + X

Coefficients:
─────────────────────────────────────────────────────────────
Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
─────────────────────────────────────────────────────────────
X 2.21429 0.112938 19.61 0.0026 1.72835 2.70022
─────────────────────────────────────────────────────────────
```
To read more about the `@formula` syntax, check out [the documentation for `@formula`](https://juliastats.org/StatsModels.jl/stable/formula/#The-@formula-language)

## Probit regression
```jldoctest
julia> data = DataFrame(X=[1,2,2], Y=[1,0,1])
Expand Down