Skip to content

L-theorist/dsr-serverless-course

 
 

Repository files navigation

Serverless Course

Pre-requisites

  • git
  • conda
  • aws cloud account
  • configured cli

Preparing your local env

Clone the github repo

$ git clone [email protected]:safaa-alnabulsi/dsr-serverless-course.git
cd dsr-serverless-course

Create python3.6 virtual env, use

$ conda create -n myenvpy3.6 python=3.6

Activate this environment, use

 $ conda activate myenvpy3.6

Install needed libraries, use

 $ pip install -r requirements.txt

Before using aws-cli, you need to configure it with your AWS credentials. You can create a user in https://console.aws.amazon.com/iam/ and export the credentials csv. If the user name is cli-user, run the following:

$ aws configure --profile cli-user
AWS Access Key ID: foo
AWS Secret Access Key: bar
Default region name [us-west-2]: eu-west-1
Default output format [None]: json

$ export AWS_PROFILE=cli-user

To test if you have access, run the following and you shouldn't see an error:

$ aws s3 ls

To deactivate an active environment, use

 $ conda deactivate

Tutorials & Labs

Introduction

To learn more, follow this tutorial 00-intro.md

AWS Console General Introduction

To learn more, follow this tutorial 01-aws-console-general-intro.md

Create lambda from a blurprint using aws console

To learn more, follow this tutorial 02-create-lambda-from-blueprint-with-aws-console.md

Create lambda from scratch using aws console

To learn more, follow this tutorial 03-create-lambda-from-scratch-with-aws-console.md

Easy setup and deployment using shell scripts

To learn more, follow this tutorial 05-create-lambda-with-aws-cli-and-shell-scripts.md

Text to speech example, using boto3 (Python SDK)

To learn more, follow this tutorial 06-text-to-speech-lambda-boto3-and-polly.md

To clean the created lambda and infra

$ . scripts/clean.sh function-name 

References

About

Teaching material for DSR bootcamp - AWS Serverless

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Shell 74.1%
  • Python 25.9%