-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcarla_env.py
749 lines (626 loc) · 29.1 KB
/
carla_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
#!/usr/bin/env python
# Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
#
import random
import glob
import os
import sys
import time
from PIL import Image
from PIL.PngImagePlugin import PngImageFile, PngInfo
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
import math
from dotmap import DotMap
try:
import pygame
except ImportError:
raise RuntimeError('cannot import pygame, make sure pygame package is installed')
try:
import numpy as np
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed')
#try:
import queue
#except ImportError:
# import Queue as queue
from agents.navigation.agent import Agent, AgentState
from agents.navigation.local_planner import LocalPlanner
class CarlaSyncMode(object):
"""
Context manager to synchronize output from different sensors. Synchronous
mode is enabled as long as we are inside this context
with CarlaSyncMode(world, sensors) as sync_mode:
while True:
data = sync_mode.tick(timeout=1.0)
"""
def __init__(self, world, *sensors, **kwargs):
self.world = world
self.sensors = sensors
self.frame = None
self.delta_seconds = 1.0 / kwargs.get('fps', 20)
self._queues = []
self._settings = None
self.start()
def start(self):
self._settings = self.world.get_settings()
self.frame = self.world.apply_settings(carla.WorldSettings(
no_rendering_mode=False,
synchronous_mode=True,
fixed_delta_seconds=self.delta_seconds))
def make_queue(register_event):
q = queue.Queue()
register_event(q.put)
self._queues.append(q)
make_queue(self.world.on_tick)
for sensor in self.sensors:
make_queue(sensor.listen)
def tick(self, timeout):
self.frame = self.world.tick()
data = [self._retrieve_data(q, timeout) for q in self._queues]
assert all(x.frame == self.frame for x in data)
return data
def __exit__(self, *args, **kwargs):
self.world.apply_settings(self._settings)
def _retrieve_data(self, sensor_queue, timeout):
while True:
data = sensor_queue.get(timeout=timeout)
if data.frame == self.frame:
return data
def draw_image(surface, image, blend=False):
array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
array = np.reshape(array, (image.height, image.width, 4))
array = array[:, :, :3]
array = array[:, :, ::-1]
image_surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
if blend:
image_surface.set_alpha(100)
surface.blit(image_surface, (0, 0))
def get_font():
fonts = [x for x in pygame.font.get_fonts()]
default_font = 'ubuntumono'
font = default_font if default_font in fonts else fonts[0]
font = pygame.font.match_font(font)
return pygame.font.Font(font, 14)
def should_quit():
for event in pygame.event.get():
if event.type == pygame.QUIT:
return True
elif event.type == pygame.KEYUP:
if event.key == pygame.K_ESCAPE:
return True
return False
def clamp(value, minimum=0.0, maximum=100.0):
return max(minimum, min(value, maximum))
class Sun(object):
def __init__(self, azimuth, altitude):
self.azimuth = azimuth
self.altitude = altitude
self._t = 0.0
def tick(self, delta_seconds):
self._t += 0.008 * delta_seconds
self._t %= 2.0 * math.pi
self.azimuth += 0.25 * delta_seconds
self.azimuth %= 360.0
# self.altitude = (70 * math.sin(self._t)) - 20 # [50, -90]
min_alt, max_alt = [20, 90]
self.altitude = 0.5 * (max_alt + min_alt) + 0.5 * (max_alt - min_alt) * math.cos(self._t)
def __str__(self):
return 'Sun(alt: %.2f, azm: %.2f)' % (self.altitude, self.azimuth)
class Storm(object):
def __init__(self, precipitation):
self._t = precipitation if precipitation > 0.0 else -50.0
self._increasing = True
self.clouds = 0.0
self.rain = 0.0
self.wetness = 0.0
self.puddles = 0.0
self.wind = 0.0
self.fog = 0.0
def tick(self, delta_seconds):
delta = (1.3 if self._increasing else -1.3) * delta_seconds
self._t = clamp(delta + self._t, -250.0, 100.0)
self.clouds = clamp(self._t + 40.0, 0.0, 60.0)
self.rain = clamp(self._t, 0.0, 80.0)
self.wind = 5.0 if self.clouds <= 20 else 90 if self.clouds >= 70 else 40
if self._t == -250.0:
self._increasing = True
if self._t == 100.0:
self._increasing = False
def __str__(self):
return 'Storm(clouds=%d%%, rain=%d%%, wind=%d%%)' % (self.clouds, self.rain, self.wind)
class Weather(object):
def __init__(self, world, changing_weather_speed):
self.world = world
self.reset()
self.weather = world.get_weather()
self.changing_weather_speed = changing_weather_speed
self._sun = Sun(self.weather.sun_azimuth_angle, self.weather.sun_altitude_angle)
self._storm = Storm(self.weather.precipitation)
def reset(self):
weather_params = carla.WeatherParameters(sun_altitude_angle=90.)
self.world.set_weather(weather_params)
def tick(self):
self._sun.tick(self.changing_weather_speed)
self._storm.tick(self.changing_weather_speed)
self.weather.cloudiness = self._storm.clouds
self.weather.precipitation = self._storm.rain
self.weather.precipitation_deposits = self._storm.puddles
self.weather.wind_intensity = self._storm.wind
self.weather.fog_density = self._storm.fog
self.weather.wetness = self._storm.wetness
self.weather.sun_azimuth_angle = self._sun.azimuth
self.weather.sun_altitude_angle = self._sun.altitude
self.world.set_weather(self.weather)
def __str__(self):
return '%s %s' % (self._sun, self._storm)
class CarlaEnv(object):
def __init__(self,
render_display=0, # 0, 1
record_display_images=0, # 0, 1
record_rl_images=0, # 0, 1
changing_weather_speed=0.0, # [0, +inf)
display_text=0, # 0, 1
rl_image_size=84,
max_episode_steps=1000,
frame_skip=1,
is_other_cars=True,
start_lane=None,
fov=60, # degrees for rl camera
num_cameras=5,
port=2000
):
if record_display_images:
assert render_display
self.render_display = render_display
self.save_display_images = record_display_images
self.save_rl_images = record_rl_images
self.changing_weather_speed = changing_weather_speed
self.display_text = display_text
self.rl_image_size = rl_image_size
self._max_episode_steps = max_episode_steps # DMC uses this
self.frame_skip = frame_skip
self.is_other_cars = is_other_cars
self.start_lane = start_lane
self.num_cameras = num_cameras
self.actor_list = []
if self.render_display:
pygame.init()
self.display = pygame.display.set_mode((800, 600), pygame.HWSURFACE | pygame.DOUBLEBUF)
self.font = get_font()
self.clock = pygame.time.Clock()
self.client = carla.Client('localhost', port)
self.client.set_timeout(5.0)
self.world = self.client.load_world("Town04")
self.map = self.world.get_map()
assert self.map.name == "Town04"
# remove old vehicles and sensors (in case they survived)
self.world.tick()
actor_list = self.world.get_actors()
for vehicle in actor_list.filter("*vehicle*"):
# if vehicle.id != self.vehicle.id:
print("Warning: removing old vehicle")
vehicle.destroy()
for sensor in actor_list.filter("*sensor*"):
print("Warning: removing old sensor")
sensor.destroy()
self.vehicle = None
self.vehicle_start_pose = None
self.vehicles_list = [] # their ids
self.vehicles = None
self.reset_vehicle() # creates self.vehicle
self.actor_list.append(self.vehicle)
blueprint_library = self.world.get_blueprint_library()
if render_display:
self.camera_rgb = self.world.spawn_actor(
blueprint_library.find('sensor.camera.rgb'),
carla.Transform(carla.Location(x=-5.5, z=2.8), carla.Rotation(pitch=-15)),
attach_to=self.vehicle)
self.actor_list.append(self.camera_rgb)
# we'll use up to five cameras, which we'll stitch together
bp = blueprint_library.find('sensor.camera.rgb')
bp.set_attribute('image_size_x', str(self.rl_image_size))
bp.set_attribute('image_size_y', str(self.rl_image_size))
bp.set_attribute('fov', str(fov))
location = carla.Location(x=1.6, z=1.7)
self.camera_rl = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=0.0)), attach_to=self.vehicle)
self.camera_rl_left = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=-float(fov))), attach_to=self.vehicle)
self.camera_rl_lefter = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=-2*float(fov))), attach_to=self.vehicle)
self.camera_rl_right = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=float(fov))), attach_to=self.vehicle)
self.camera_rl_righter = self.world.spawn_actor(bp, carla.Transform(location, carla.Rotation(yaw=2*float(fov))), attach_to=self.vehicle)
self.actor_list.append(self.camera_rl)
self.actor_list.append(self.camera_rl_left)
self.actor_list.append(self.camera_rl_lefter)
self.actor_list.append(self.camera_rl_right)
self.actor_list.append(self.camera_rl_righter)
bp = self.world.get_blueprint_library().find('sensor.other.collision')
self.collision_sensor = self.world.spawn_actor(bp, carla.Transform(), attach_to=self.vehicle)
self.collision_sensor.listen(lambda event: self._on_collision(event))
self.actor_list.append(self.collision_sensor)
self._collision_intensities_during_last_time_step = []
if self.save_display_images or self.save_rl_images:
import datetime
now = datetime.datetime.now()
image_dir = "images-" + now.strftime("%Y-%m-%d-%H-%M-%S")
os.mkdir(image_dir)
self.image_dir = image_dir
if self.render_display:
self.sync_mode = CarlaSyncMode(self.world, self.camera_rgb, self.camera_rl, self.camera_rl_left, self.camera_rl_lefter, self.camera_rl_right, self.camera_rl_righter, fps=20)
else:
self.sync_mode = CarlaSyncMode(self.world, self.camera_rl, self.camera_rl_left, self.camera_rl_lefter, self.camera_rl_right, self.camera_rl_righter, fps=20)
# weather
self.weather = Weather(self.world, self.changing_weather_speed)
# dummy variables given bisim's assumption on deep-mind-control suite APIs
low = -1.0
high = 1.0
self.action_space = DotMap()
self.action_space.low.min = lambda: low
self.action_space.high.max = lambda: high
self.action_space.shape = [2]
self.observation_space = DotMap()
self.observation_space.shape = (3, rl_image_size, num_cameras * rl_image_size)
self.observation_space.dtype = np.dtype(np.uint8)
self.reward_range = None
self.metadata = None
self.action_space.sample = lambda: np.random.uniform(low=low, high=high, size=self.action_space.shape[0]).astype(np.float32)
# roaming carla agent
self.agent = None
self.count = 0
self.dist_s = 0
self.return_ = 0
self.velocities = []
self.world.tick()
self.reset() # creates self.agent
def dist_from_center_lane(self, vehicle, info):
# assume on highway
vehicle_location = vehicle.get_location()
vehicle_waypoint = self.map.get_waypoint(vehicle_location)
vehicle_velocity = vehicle.get_velocity() # Vecor3D
vehicle_velocity_xy = np.array([vehicle_velocity.x, vehicle_velocity.y])
speed = np.linalg.norm(vehicle_velocity_xy)
vehicle_waypoint_closest_to_road = \
self.map.get_waypoint(vehicle_location, project_to_road=True, lane_type=carla.LaneType.Driving)
road_id = vehicle_waypoint_closest_to_road.road_id
assert road_id is not None
lane_id_sign = int(np.sign(vehicle_waypoint_closest_to_road.lane_id))
assert lane_id_sign in [-1, 1]
current_waypoint = self.map.get_waypoint(vehicle_location, project_to_road=False)
if current_waypoint is None:
print("Episode fail: current waypoint is off the road! (frame %d)" % self.count)
info['reason_episode_ended'] = 'off_road'
done, dist, vel_s = True, 100., 0.
return dist, vel_s, speed, done, info
goal_waypoint = current_waypoint.next(5.)[0]
if goal_waypoint is None:
print("Episode fail: goal waypoint is off the road! (frame %d)" % self.count)
info['reason_episode_ended'] = 'off_road'
done, dist, vel_s = True, 100., 0.
else:
goal_location = goal_waypoint.transform.location
goal_xy = np.array([goal_location.x, goal_location.y])
dist = 0.
next_goal_waypoint = goal_waypoint.next(0.1) # waypoints are ever 0.02 meters
if len(next_goal_waypoint) != 1:
print('warning: {} waypoints (not 1)'.format(len(next_goal_waypoint)))
if len(next_goal_waypoint) == 0:
print("Episode done: no more waypoints left. (frame %d)" % self.count)
info['reason_episode_ended'] = 'no_waypoints'
done, vel_s = True, 0.
else:
location_ahead = next_goal_waypoint[0].transform.location
highway_vector = np.array([location_ahead.x, location_ahead.y]) - goal_xy
highway_unit_vector = np.array(highway_vector) / np.linalg.norm(highway_vector)
vel_s = np.dot(vehicle_velocity_xy, highway_unit_vector)
done = False
# not algorithm's fault, but the simulator sometimes throws the car in the air wierdly
if vehicle_velocity.z > 1. and self.count < 20:
print("Episode done: vertical velocity too high ({}), usually a simulator glitch (frame {})".format(vehicle_velocity.z, self.count))
info['reason_episode_ended'] = 'carla_bug'
done = True
if vehicle_location.z > 0.5 and self.count < 20:
print("Episode done: vertical velocity too high ({}), usually a simulator glitch (frame {})".format(vehicle_location.z, self.count))
info['reason_episode_ended'] = 'carla_bug'
done = True
return dist, vel_s, speed, done, info
def _on_collision(self, event):
impulse = event.normal_impulse
intensity = math.sqrt(impulse.x ** 2 + impulse.y ** 2 + impulse.z ** 2)
print('Collision (intensity {})'.format(intensity))
self._collision_intensities_during_last_time_step.append(intensity)
def reset(self):
self.reset_vehicle()
self.world.tick()
self.reset_other_vehicles()
self.world.tick()
self.agent = RoamingAgentModified(self.vehicle, follow_traffic_lights=False)
self.count = 0
self.dist_s = 0
self.return_ = 0
self.velocities = []
# get obs:
obs, _, _, _ = self.step(action=None)
return obs
def reset_vehicle(self):
start_lane = self.start_lane if self.start_lane is not None else np.random.choice([1, 2, 3, 4])
start_x = 1.5 + 3.5 * start_lane # 3.5 = lane width
self.vehicle_start_pose = carla.Transform(carla.Location(x=start_x, y=0, z=0.1), carla.Rotation(yaw=-90))
if self.vehicle is None:
# create vehicle
blueprint_library = self.world.get_blueprint_library()
vehicle_blueprint = blueprint_library.find('vehicle.audi.a2')
self.vehicle = self.world.spawn_actor(vehicle_blueprint, self.vehicle_start_pose)
else:
self.vehicle.set_transform(self.vehicle_start_pose)
self.vehicle.set_velocity(carla.Vector3D())
self.vehicle.set_angular_velocity(carla.Vector3D())
def reset_other_vehicles(self):
if not self.is_other_cars:
return
# clear out old vehicles
self.client.apply_batch([carla.command.DestroyActor(x) for x in self.vehicles_list])
self.world.tick()
self.vehicles_list = []
blueprints = self.world.get_blueprint_library().filter('vehicle.*')
blueprints = [x for x in blueprints if int(x.get_attribute('number_of_wheels')) == 4]
num_vehicles = 10
other_car_transforms = []
for _ in range(num_vehicles):
lane_id = random.choice([1, 2, 3, 4])
start_x = 1.5 + 3.5 * lane_id
start_y = random.uniform(-40., 40.)
transform = carla.Transform(carla.Location(x=start_x, y=start_y, z=0.1), carla.Rotation(yaw=-90))
other_car_transforms.append(transform)
# Spawn vehicles
batch = []
for n, transform in enumerate(other_car_transforms):
blueprint = random.choice(blueprints)
if blueprint.has_attribute('color'):
color = random.choice(blueprint.get_attribute('color').recommended_values)
blueprint.set_attribute('color', color)
if blueprint.has_attribute('driver_id'):
driver_id = random.choice(blueprint.get_attribute('driver_id').recommended_values)
blueprint.set_attribute('driver_id', driver_id)
blueprint.set_attribute('role_name', 'autopilot')
batch.append(carla.command.SpawnActor(blueprint, transform).then(
carla.command.SetAutopilot(carla.command.FutureActor, True)))
for response in self.client.apply_batch_sync(batch, False):
self.vehicles_list.append(response.actor_id)
for response in self.client.apply_batch_sync(batch):
if response.error:
pass
# print(response.error)
else:
self.vehicles_list.append(response.actor_id)
def compute_steer_action(self):
control = self.agent.run_step() # PID decides control.steer
steer = control.steer
throttle = control.throttle
brake = control.brake
throttle_brake = -brake
if throttle > 0.:
throttle_brake = throttle
steer_action = np.array([steer, throttle_brake], dtype=np.float32)
return steer_action
def step(self, action):
rewards = []
for _ in range(self.frame_skip): # default 1
next_obs, reward, done, info = self._simulator_step(action)
rewards.append(reward)
if done:
break
return next_obs, np.mean(rewards), done, info # just last info?
def _simulator_step(self, action, dt=0.05):
if self.render_display:
if should_quit():
return
self.clock.tick()
if action is not None:
steer = float(action[0])
throttle_brake = float(action[1])
if throttle_brake >= 0.0:
throttle = throttle_brake
brake = 0.0
else:
throttle = 0.0
brake = -throttle_brake
assert 0.0 <= throttle <= 1.0
assert -1.0 <= steer <= 1.0
assert 0.0 <= brake <= 1.0
vehicle_control = carla.VehicleControl(
throttle=throttle,
steer=steer,
brake=brake,
hand_brake=False,
reverse=False,
manual_gear_shift=False
)
self.vehicle.apply_control(vehicle_control)
else:
throttle, steer, brake = 0., 0., 0.
# Advance the simulation and wait for the data.
if self.render_display:
snapshot, image_rgb, image_rl, image_rl_left, image_rl_lefter, image_rl_right, image_rl_righter = self.sync_mode.tick(timeout=2.0)
else:
snapshot, image_rl, image_rl_left, image_rl_lefter, image_rl_right, image_rl_righter = self.sync_mode.tick(timeout=2.0)
info = {}
info['reason_episode_ended'] = ''
dist_from_center, vel_s, speed, done, info = self.dist_from_center_lane(self.vehicle, info)
collision_intensities_during_last_time_step = sum(self._collision_intensities_during_last_time_step)
self._collision_intensities_during_last_time_step.clear() # clear it ready for next time step
assert collision_intensities_during_last_time_step >= 0.
collision_cost = 0.0001 * collision_intensities_during_last_time_step
vel_t = math.sqrt(speed**2 - vel_s**2)
reward = vel_s * dt - collision_cost - abs(steer) # doesn't work if 0.001 cost collisions
info['crash_intensity'] = collision_intensities_during_last_time_step
info['steer'] = steer
info['brake'] = brake
info['distance'] = vel_s * dt
self.dist_s += vel_s * dt
self.return_ += reward
self.weather.tick()
# Draw the display.
if self.render_display:
draw_image(self.display, image_rgb)
if self.display_text:
self.display.blit(self.font.render('frame %d' % self.count, True, (255, 255, 255)), (8, 10))
self.display.blit(self.font.render('highway progression %4.1f m/s (%5.1f m) (%5.2f speed)' % (vel_s, self.dist_s, speed), True, (255, 255, 255)), (8, 28))
self.display.blit(self.font.render('%5.2f meters off center' % dist_from_center, True, (255, 255, 255)), (8, 46))
self.display.blit(self.font.render('%5.2f reward (return %.2f)' % (reward, self.return_), True, (255, 255, 255)), (8, 64))
self.display.blit(self.font.render('%5.2f collision intensity ' % collision_intensities_during_last_time_step, True, (255, 255, 255)), (8, 82))
self.display.blit(self.font.render('%5.2f thottle, %3.2f steer, %3.2f brake' % (throttle, steer, brake), True, (255, 255, 255)), (8, 100))
self.display.blit(self.font.render(str(self.weather), True, (255, 255, 255)), (8, 118))
pygame.display.flip()
rgbs = []
if self.num_cameras == 1:
ims = [image_rl]
elif self.num_cameras == 3:
ims = [image_rl_left, image_rl, image_rl_right]
elif self.num_cameras == 5:
ims = [image_rl_lefter, image_rl_left, image_rl, image_rl_right, image_rl_righter]
else:
raise ValueError("num cameras must be 1 or 3 or 5")
for im in ims:
bgra = np.array(im.raw_data).reshape(self.rl_image_size, self.rl_image_size, 4) # BGRA format
bgr = bgra[:, :, :3] # BGR format (84 x 84 x 3)
rgb = np.flip(bgr, axis=2) # RGB format (84 x 84 x 3)
rgbs.append(rgb)
rgb = np.concatenate(rgbs, axis=1) # (84 x 252 x 3)
# Rowan added
if self.render_display and self.save_display_images:
image_name = os.path.join(self.image_dir, "display%08d.jpg" % self.count)
pygame.image.save(self.display, image_name)
# ffmpeg -r 20 -pattern_type glob -i 'display*.jpg' carla.mp4
if self.save_rl_images:
image_name = os.path.join(self.image_dir, "rl%08d.png" % self.count)
im = Image.fromarray(rgb)
metadata = PngInfo()
metadata.add_text("throttle", str(throttle))
metadata.add_text("steer", str(steer))
metadata.add_text("brake", str(brake))
im.save(image_name, "PNG", pnginfo=metadata)
# # Example usage:
# from PIL.PngImagePlugin import PngImageFile
# im = PngImageFile("rl00001234.png")
# # Actions are stored in the image's metadata:
# print("Actions: %s" % im.text)
# throttle = float(im.text['throttle']) # range [0, 1]
# steer = float(im.text['steer']) # range [-1, 1]
# brake = float(im.text['brake']) # range [0, 1]
self.count += 1
next_obs = rgb # (84 x 252 x 3) or (84 x 420 x 3)
# debugging - to inspect images:
# import matplotlib.pyplot as plt
# import pdb; pdb.set_trace()
# plt.imshow(next_obs)
# plt.show()
next_obs = np.transpose(next_obs, [2, 0, 1]) # 3 x 84 x 84/252/420
assert next_obs.shape == self.observation_space.shape
if self.count >= self._max_episode_steps:
print("Episode success: I've reached the episode horizon ({}).".format(self._max_episode_steps))
info['reason_episode_ended'] = 'success'
done = True
if speed < 0.02 and self.count >= 100 and self.count % 100 == 0: # a hack, instead of a counter
print("Episode fail: speed too small ({}), think I'm stuck! (frame {})".format(speed, self.count))
info['reason_episode_ended'] = 'stuck'
done = True
return next_obs, reward, done, info
def finish(self):
print('destroying actors.')
for actor in self.actor_list:
actor.destroy()
print('\ndestroying %d vehicles' % len(self.vehicles_list))
self.client.apply_batch([carla.command.DestroyActor(x) for x in self.vehicles_list])
time.sleep(0.5)
pygame.quit()
print('done.')
class LocalPlannerModified(LocalPlanner):
def __del__(self):
pass # otherwise it deletes our vehicle object
def run_step(self):
return super().run_step(debug=False) # otherwise by default shows waypoints, that interfere with our camera
class RoamingAgentModified(Agent):
"""
RoamingAgent implements a basic agent that navigates scenes making random
choices when facing an intersection.
This agent respects traffic lights and other vehicles.
"""
def __init__(self, vehicle, follow_traffic_lights=True):
"""
:param vehicle: actor to apply to local planner logic onto
"""
super(RoamingAgentModified, self).__init__(vehicle)
self._proximity_threshold = 10.0 # meters
self._state = AgentState.NAVIGATING
self._follow_traffic_lights = follow_traffic_lights
# for throttle 0.5, 0.75, 1.0
args_lateral_dict = {
'K_P': 1.0,
'K_D': 0.005,
'K_I': 0.0,
'dt': 1.0 / 20.0}
opt_dict = {'lateral_control_dict': args_lateral_dict}
self._local_planner = LocalPlannerModified(self._vehicle, opt_dict)
def run_step(self, debug=False):
"""
Execute one step of navigation.
:return: carla.VehicleControl
"""
# is there an obstacle in front of us?
hazard_detected = False
# retrieve relevant elements for safe navigation, i.e.: traffic lights
# and other vehicles
actor_list = self._world.get_actors()
vehicle_list = actor_list.filter("*vehicle*")
lights_list = actor_list.filter("*traffic_light*")
# check possible obstacles
vehicle_state, vehicle = self._is_vehicle_hazard(vehicle_list)
if vehicle_state:
if debug:
print('!!! VEHICLE BLOCKING AHEAD [{}])'.format(vehicle.id))
self._state = AgentState.BLOCKED_BY_VEHICLE
hazard_detected = True
# check for the state of the traffic lights
light_state, traffic_light = self._is_light_red(lights_list)
if light_state and self._follow_traffic_lights:
if debug:
print('=== RED LIGHT AHEAD [{}])'.format(traffic_light.id))
self._state = AgentState.BLOCKED_RED_LIGHT
hazard_detected = True
if hazard_detected:
control = self.emergency_stop()
else:
self._state = AgentState.NAVIGATING
# standard local planner behavior
control = self._local_planner.run_step()
return control
if __name__ == '__main__':
env = CarlaEnv(
render_display=1, # 0, 1
record_display_images=0, # 0, 1
record_rl_images=1, # 0, 1
changing_weather_speed=1.0, # [0, +inf)
display_text=1, # 0, 1
is_other_cars=True,
frame_skip=4,
max_episode_steps=100000,
rl_image_size=84,
start_lane=1,
)
try:
done = False
while not done:
action = env.compute_steer_action()
next_obs, reward, done, info = env.step(action)
obs = env.reset()
finally:
env.finish()