Bridging the Semantic-Numerical Gap: A Numerical Reasoning Method of Cross-modal Knowledge Graph for Material Property Prediction
Official code for "Bridging the Semantic-Numerical Gap: A Numerical Reasoning Method of Cross-modal Knowledge Graph for Material Property Prediction"
conda create -n NRKG python=3.8
conda activate NRKG
# Please install PyTorch according to your CUDA version.
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 cpuonly -c pytorch
pip install -r requirements.txt
We proposed two high-entropy alloy (HEA) datasets, HEA-HD
and HEA-CRD
. HEA-HD
is a hardness dataset of HEAs, and HEA-CRD
is a corrosion resistance dataset of HEAs.
We also provide the cross-modal knowledge graph based on the dataset, which is in ./dataset/HEA-HD-KG
and ./dataset/HEA-CRD-KG
. The entity.pkl
and relation.pkl
are the entity and relation information. Please use the pickle
library to read.
NR-KG
├───dataset
│ ├───HEA-CRD-KG
│ ├───HEA-CRD-Ori
│ ├───HEA-HD-KG
│ └───HEA-HD-Ori
├───model
│ └───pre_trained
│ ├───HEA-CRD
│ └───HEA-HD
├───res
├───tools
├───utils
├───GCN_model.py
├───main.py
├───requirements.txt
├───LICENSE
└───README.md
To train the NR-KG model on the HEA-HD dataset, run the following command:
python main.py --root_path ./ --dataaddr ./dataset --n_fold 6
--seed 523 --data_seed 2021 --id 0 --epoch 2000 --fp16 False --hidden_size 128 --num_layers 2 --dropout 0.5 --activation LeakyReLU --lr 0.005 --scheduler StepLR --gamma 0.997 --step_size 1 --a_CLL_loss 0.16 --a_MSELoss 1.0 --a_PPL_Loss 0.04 --patience 50 --early_stop True --KGtype HEA-HD-KG --gpu 0 --state train
To train the NR-KG model on the HEA-CRD dataset, run the following command:
python main.py --root_path ./ --dataaddr ./dataset --n_fold 6 --seed 23 --data_seed 2024 --id 1 --epoch 2000 --fp16 False --hidden_size 128 --num_layers 2 --dropout 0.5 --activation LeakyReLU --lr 0.001 --scheduler StepLR --gamma 0.997 --step_size 1 --a_CLL_loss 0.16 --a_MSELoss 1.0 --a_PPL_Loss 0.02 --patience 50 --early_stop True --KGtype HEA-CRD-KG --gpu 0 --state train
To test the NR-KG model on the HEA-HD dataset using the checkpoint, run the following command:
python main.py --root_path ./ --dataaddr ./dataset --net_path ./model/pre_trained/HEA-HD --n_fold 6 --data_seed 2021 --id 5005 --KGtype HEA-HD-KG --gpu 0 --state test
To test the NR-KG model on the HEA-CRD dataset using the checkpoint, run the following command:
python main.py --root_path ./ --dataaddr ./dataset --net_path ./model/pre_trained/HEA-CRD --n_fold 6 --data_seed 2024 --id 5005 --KGtype HEA-CRD-KG --gpu 0 --state test
The test results will be saved in the ./res
folder. The results in this paper are run on NVIDIA RTX 1080Ti
.
HEA-HD Dataset Results: The results of 6-fold cross-validation are as follows:
Fold | MAE | RMSE | R2 |
---|---|---|---|
0 | 2958 | 38.72 | 0.92 |
1 | 4467 | 47.27 | 0.85 |
2 | 2677 | 37.93 | 0.90 |
3 | 3592 | 44.83 | 0.88 |
4 | 4793 | 48.13 | 0.84 |
5 | 2636 | 40.90 | 0.89 |
Ave. ± Std. | 3520±931 | 42.96±4.39 | 0.88±0.03 |
HEA-CRD Dataset Results: The results of 6-fold cross-validation are as follows:
Fold | MAE | RMSE | R2 |
---|---|---|---|
0 | 2.55 | 1.16 | 0.43 |
1 | 2.14 | 1.19 | 0.66 |
2 | 1.73 | 0.99 | 0.58 |
3 | 1.52 | 1.01 | 0.46 |
4 | 1.38 | 0.98 | 0.73 |
5 | 3.94 | 1.40 | 0.33 |
Ave. ± Std. | 2.21±0.95 | 1.12±0.16 | 0.53±0.15 |
If you find this code useful in your research, please consider citing our paper.
bib format will be provided after the paper is published.
If you have any questions, feel free to contact me via issue
or email ([email protected]).