Skip to content

Commit

Permalink
Update PraisonAI to version 2.0.42 and praisonaiagents to version 0.0.32
Browse files Browse the repository at this point in the history
- Updated the PraisonAI package version from 2.0.41 to 2.0.42 in Dockerfile, pyproject.toml, and related files.
- Adjusted installation command in Dockerfile and deploy scripts to reflect the new version.
- Updated the praisonaiagents package version from 0.0.31 to 0.0.32 in relevant files.
- Enhanced the prompt chaining implementation in agents/prompt_chaining.py for improved task management and workflow execution.
- Added new documentation on agentic prompt chaining to guide users in creating complex workflows.
- Updated dependencies in uv.lock for compatibility with the new versions.
  • Loading branch information
MervinPraison committed Jan 12, 2025
1 parent 315ac71 commit 0a4e476
Show file tree
Hide file tree
Showing 12 changed files with 429 additions and 98 deletions.
2 changes: 1 addition & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
FROM python:3.11-slim
WORKDIR /app
COPY . .
RUN pip install flask praisonai==2.0.41 gunicorn markdown
RUN pip install flask praisonai==2.0.42 gunicorn markdown
EXPOSE 8080
CMD ["gunicorn", "-b", "0.0.0.0:8080", "api:app"]
36 changes: 24 additions & 12 deletions agents/praisonaiagents/process/process.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,22 +130,28 @@ async def aworkflow(self) -> AsyncGenerator[str, None]:

# Determine next task based on result
next_task = None
if current_task.result:
if current_task and current_task.result:
if current_task.task_type in ["decision", "loop"]:
result = current_task.result.raw.lower()
# Check conditions
for condition, tasks in current_task.condition.items():
if condition.lower() in result and tasks:
next_task_name = tasks[0]
if condition.lower() in result:
# Handle both list and direct string values
task_value = tasks[0] if isinstance(tasks, list) else tasks
if not task_value or task_value == "exit": # If empty or explicit exit
logging.info("Workflow exit condition met, ending workflow")
current_task = None
break
next_task_name = task_value
next_task = next((t for t in self.tasks.values() if t.name == next_task_name), None)
# For loops, allow revisiting the same task
if next_task and next_task.id == current_task.id:
visited_tasks.discard(current_task.id)
break

if not next_task and current_task.next_tasks:
next_task_name = current_task.next_tasks[0]
next_task = next((t for t in self.tasks.values() if t.name == next_task_name), None)
if not next_task and current_task and current_task.next_tasks:
next_task_name = current_task.next_tasks[0]
next_task = next((t for t in self.tasks.values() if t.name == next_task_name), None)

current_task = next_task
if not current_task:
Expand Down Expand Up @@ -391,22 +397,28 @@ def workflow(self):

# Determine next task based on result
next_task = None
if current_task.result:
if current_task and current_task.result:
if current_task.task_type in ["decision", "loop"]:
result = current_task.result.raw.lower()
# Check conditions
for condition, tasks in current_task.condition.items():
if condition.lower() in result and tasks:
next_task_name = tasks[0]
if condition.lower() in result:
# Handle both list and direct string values
task_value = tasks[0] if isinstance(tasks, list) else tasks
if not task_value or task_value == "exit": # If empty or explicit exit
logging.info("Workflow exit condition met, ending workflow")
current_task = None
break
next_task_name = task_value
next_task = next((t for t in self.tasks.values() if t.name == next_task_name), None)
# For loops, allow revisiting the same task
if next_task and next_task.id == current_task.id:
visited_tasks.discard(current_task.id)
break

if not next_task and current_task.next_tasks:
next_task_name = current_task.next_tasks[0]
next_task = next((t for t in self.tasks.values() if t.name == next_task_name), None)
if not next_task and current_task and current_task.next_tasks:
next_task_name = current_task.next_tasks[0]
next_task = next((t for t in self.tasks.values() if t.name == next_task_name), None)

current_task = next_task
if not current_task:
Expand Down
132 changes: 61 additions & 71 deletions agents/prompt_chaining.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,82 +10,72 @@ def get_time_check():
print(f"Time check: {current_time} is {result}")
return result

def create_prompt_chain():
# Create agents for each step in the chain
agent1 = Agent(
name="Time Checker",
role="Time checker",
goal="Check if the time is even or odd",
instructions="Check if the time is even or odd",
tools=[get_time_check]
)
# Create agents for each step in the chain
agent1 = Agent(
name="Time Checker",
role="Time checker",
goal="Check if the time is even or odd",
instructions="Check if the time is even or odd",
tools=[get_time_check]
)

agent2 = Agent(
name="Advanced Analyzer",
role="Advanced data analyzer",
goal="Perform in-depth analysis of processed data",
instructions="Analyze the processed data in detail"
)
agent2 = Agent(
name="Advanced Analyzer",
role="Advanced data analyzer",
goal="Perform in-depth analysis of processed data",
instructions="Analyze the processed data in detail"
)

agent3 = Agent(
name="Final Processor",
role="Final data processor",
goal="Generate final output based on analysis",
instructions="Create final output based on analyzed data"
)
agent3 = Agent(
name="Final Processor",
role="Final data processor",
goal="Generate final output based on analysis",
instructions="Create final output based on analyzed data"
)

# Create tasks for each step
initial_task = Task(
name="time_check",
description="Getting time check and checking if it is even or odd",
expected_output="Getting time check and checking if it is even or odd",
agent=agent1,
is_start=True, # Mark as the starting task
task_type="decision", # This task will make a decision
next_tasks=["advanced_analysis"], # Next task if condition passes
condition={
"even": ["advanced_analysis"], # If passes, go to advanced analysis
"odd": ["final_processing"] # If fails, exit the chain
}
)
# Create tasks for each step
initial_task = Task(
name="time_check",
description="Getting time check and checking if it is even or odd",
expected_output="Getting time check and checking if it is even or odd",
agent=agent1,
is_start=True, # Mark as the starting task
task_type="decision", # This task will make a decision
next_tasks=["advanced_analysis"], # Next task if condition passes
condition={
"even": ["advanced_analysis"], # If passes, go to advanced analysis
"odd": "" # If fails, exit the chain
}
)

analysis_task = Task(
name="advanced_analysis",
description="Perform advanced analysis on the processed data",
expected_output="Analyzed data ready for final processing",
agent=agent2,
next_tasks=["final_processing"]
)
analysis_task = Task(
name="advanced_analysis",
description="Perform advanced analysis on the processed data",
expected_output="Analyzed data ready for final processing",
agent=agent2,
next_tasks=["final_processing"]
)

final_task = Task(
name="final_processing",
description="Generate final output",
expected_output="Final processed result",
agent=agent3
)
final_task = Task(
name="final_processing",
description="Generate final output",
expected_output="Final processed result",
agent=agent3
)

# Create the workflow manager
workflow = PraisonAIAgents(
agents=[agent1, agent2, agent3],
tasks=[initial_task, analysis_task, final_task],
process="workflow", # Use workflow process type
verbose=True
)
# Create the workflow manager
workflow = PraisonAIAgents(
agents=[agent1, agent2, agent3],
tasks=[initial_task, analysis_task, final_task],
process="workflow", # Use workflow process type
verbose=True
)

return workflow
# Run the workflow
results = workflow.start()

def main():
# Create and run the prompt chain
workflow = create_prompt_chain()

# Run the workflow
results = workflow.start()

# Print results
print("\nWorkflow Results:")
for task_id, result in results["task_results"].items():
if result:
print(f"Task {task_id}: {result.raw}")

if __name__ == "__main__":
main()
# Print results
print("\nWorkflow Results:")
for task_id, result in results["task_results"].items():
if result:
print(f"Task {task_id}: {result.raw}")
2 changes: 1 addition & 1 deletion agents/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"

[project]
name = "praisonaiagents"
version = "0.0.31"
version = "0.0.32"
description = "Praison AI agents for completing complex tasks with Self Reflection Agents"
authors = [
{ name="Mervin Praison" }
Expand Down
2 changes: 1 addition & 1 deletion agents/uv.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

81 changes: 81 additions & 0 deletions cookbooks/general/prompt_chaining.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
from praisonaiagents.agent import Agent
from praisonaiagents.task import Task
from praisonaiagents.agents import PraisonAIAgents
from typing import List, Dict
import time

def get_time_check():
current_time = int(time.time())
result = "even" if current_time % 2 == 0 else "odd"
print(f"Time check: {current_time} is {result}")
return result

# Create agents for each step in the chain
agent1 = Agent(
name="Time Checker",
role="Time checker",
goal="Check if the time is even or odd",
instructions="Check if the time is even or odd",
tools=[get_time_check]
)

agent2 = Agent(
name="Advanced Analyzer",
role="Advanced data analyzer",
goal="Perform in-depth analysis of processed data",
instructions="Analyze the processed data in detail"
)

agent3 = Agent(
name="Final Processor",
role="Final data processor",
goal="Generate final output based on analysis",
instructions="Create final output based on analyzed data"
)

# Create tasks for each step
initial_task = Task(
name="time_check",
description="Getting time check and checking if it is even or odd",
expected_output="Getting time check and checking if it is even or odd",
agent=agent1,
is_start=True, # Mark as the starting task
task_type="decision", # This task will make a decision
next_tasks=["advanced_analysis"], # Next task if condition passes
condition={
"even": ["advanced_analysis"], # If passes, go to advanced analysis
"odd": "" # If fails, exit the chain
}
)

analysis_task = Task(
name="advanced_analysis",
description="Perform advanced analysis on the processed data",
expected_output="Analyzed data ready for final processing",
agent=agent2,
next_tasks=["final_processing"]
)

final_task = Task(
name="final_processing",
description="Generate final output",
expected_output="Final processed result",
agent=agent3
)

# Create the workflow manager
workflow = PraisonAIAgents(
agents=[agent1, agent2, agent3],
tasks=[initial_task, analysis_task, final_task],
process="workflow", # Use workflow process type
verbose=True
)

# Run the workflow
results = workflow.start()

# Print results
print("\nWorkflow Results:")
for task_id, result in results["task_results"].items():
if result:
print(f"Task {task_id}: {result.raw}")
2 changes: 1 addition & 1 deletion docs/api/praisonai/deploy.html
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ <h2 id="raises">Raises</h2>
file.write(&#34;FROM python:3.11-slim\n&#34;)
file.write(&#34;WORKDIR /app\n&#34;)
file.write(&#34;COPY . .\n&#34;)
file.write(&#34;RUN pip install flask praisonai==2.0.41 gunicorn markdown\n&#34;)
file.write(&#34;RUN pip install flask praisonai==2.0.42 gunicorn markdown\n&#34;)
file.write(&#34;EXPOSE 8080\n&#34;)
file.write(&#39;CMD [&#34;gunicorn&#34;, &#34;-b&#34;, &#34;0.0.0.0:8080&#34;, &#34;api:app&#34;]\n&#39;)

Expand Down
Loading

0 comments on commit 0a4e476

Please sign in to comment.