Skip to content

Commit

Permalink
Merge pull request #285 from MervinPraison/develop
Browse files Browse the repository at this point in the history
adding docs
  • Loading branch information
MervinPraison authored Jan 11, 2025
2 parents 7094623 + 315ac71 commit 8b39d2b
Show file tree
Hide file tree
Showing 24 changed files with 2,612 additions and 1 deletion.
91 changes: 91 additions & 0 deletions agents/prompt_chaining copy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
from praisonaiagents.agent import Agent
from praisonaiagents.task import Task
from praisonaiagents.agents import PraisonAIAgents
from typing import List, Dict
import time

def get_time_check():
current_time = int(time.time())
result = "even" if current_time % 2 == 0 else "odd"
print(f"Time check: {current_time} is {result}")
return result

def create_prompt_chain():
# Create agents for each step in the chain
agent1 = Agent(
name="Time Checker",
role="Time checker",
goal="Check if the time is even or odd",
instructions="Check if the time is even or odd",
tools=[get_time_check]
)

agent2 = Agent(
name="Advanced Analyzer",
role="Advanced data analyzer",
goal="Perform in-depth analysis of processed data",
instructions="Analyze the processed data in detail"
)

agent3 = Agent(
name="Final Processor",
role="Final data processor",
goal="Generate final output based on analysis",
instructions="Create final output based on analyzed data"
)

# Create tasks for each step
initial_task = Task(
name="time_check",
description="Getting time check and checking if it is even or odd",
expected_output="Getting time check and checking if it is even or odd",
agent=agent1,
is_start=True, # Mark as the starting task
task_type="decision", # This task will make a decision
next_tasks=["advanced_analysis"], # Next task if condition passes
condition={
"even": ["advanced_analysis"], # If passes, go to advanced analysis
"odd": ["final_processing"] # If fails, exit the chain
}
)

analysis_task = Task(
name="advanced_analysis",
description="Perform advanced analysis on the processed data",
expected_output="Analyzed data ready for final processing",
agent=agent2,
next_tasks=["final_processing"]
)

final_task = Task(
name="final_processing",
description="Generate final output",
expected_output="Final processed result",
agent=agent3
)

# Create the workflow manager
workflow = PraisonAIAgents(
agents=[agent1, agent2, agent3],
tasks=[initial_task, analysis_task, final_task],
process="workflow", # Use workflow process type
verbose=True
)

return workflow

def main():
# Create and run the prompt chain
workflow = create_prompt_chain()

# Run the workflow
results = workflow.start()

# Print results
print("\nWorkflow Results:")
for task_id, result in results["task_results"].items():
if result:
print(f"Task {task_id}: {result.raw}")

if __name__ == "__main__":
main()
91 changes: 91 additions & 0 deletions agents/prompt_chaining.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
from praisonaiagents.agent import Agent
from praisonaiagents.task import Task
from praisonaiagents.agents import PraisonAIAgents
from typing import List, Dict
import time

def get_time_check():
current_time = int(time.time())
result = "even" if current_time % 2 == 0 else "odd"
print(f"Time check: {current_time} is {result}")
return result

def create_prompt_chain():
# Create agents for each step in the chain
agent1 = Agent(
name="Time Checker",
role="Time checker",
goal="Check if the time is even or odd",
instructions="Check if the time is even or odd",
tools=[get_time_check]
)

agent2 = Agent(
name="Advanced Analyzer",
role="Advanced data analyzer",
goal="Perform in-depth analysis of processed data",
instructions="Analyze the processed data in detail"
)

agent3 = Agent(
name="Final Processor",
role="Final data processor",
goal="Generate final output based on analysis",
instructions="Create final output based on analyzed data"
)

# Create tasks for each step
initial_task = Task(
name="time_check",
description="Getting time check and checking if it is even or odd",
expected_output="Getting time check and checking if it is even or odd",
agent=agent1,
is_start=True, # Mark as the starting task
task_type="decision", # This task will make a decision
next_tasks=["advanced_analysis"], # Next task if condition passes
condition={
"even": ["advanced_analysis"], # If passes, go to advanced analysis
"odd": ["final_processing"] # If fails, exit the chain
}
)

analysis_task = Task(
name="advanced_analysis",
description="Perform advanced analysis on the processed data",
expected_output="Analyzed data ready for final processing",
agent=agent2,
next_tasks=["final_processing"]
)

final_task = Task(
name="final_processing",
description="Generate final output",
expected_output="Final processed result",
agent=agent3
)

# Create the workflow manager
workflow = PraisonAIAgents(
agents=[agent1, agent2, agent3],
tasks=[initial_task, analysis_task, final_task],
process="workflow", # Use workflow process type
verbose=True
)

return workflow

def main():
# Create and run the prompt chain
workflow = create_prompt_chain()

# Run the workflow
results = workflow.start()

# Print results
print("\nWorkflow Results:")
for task_id, result in results["task_results"].items():
if result:
print(f"Task {task_id}: {result.raw}")

if __name__ == "__main__":
main()
82 changes: 82 additions & 0 deletions agents/routing copy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
from praisonaiagents.agent import Agent
from praisonaiagents.task import Task
from praisonaiagents.agents import PraisonAIAgents
import time

current_time = int(time.time())
result = "even" if current_time % 2 == 0 else "odd"
print(f"Time check: {current_time} is {result}")

# Create specialized agents
router = Agent(
name="Router",
role="Input Router",
goal="Evaluate input and determine routing path",
instructions="Analyze input and decide whether to proceed or exit",
tools=[get_time_check]
)

processor1 = Agent(
name="Processor 1",
role="Secondary Processor",
goal="Process valid inputs that passed initial check",
instructions="Process data that passed the routing check"
)

processor2 = Agent(
name="Processor 2",
role="Final Processor",
goal="Perform final processing on validated data",
instructions="Generate final output for processed data"
)

# Create tasks with routing logic
routing_task = Task(
name="initial_routing",
description="check the time and return according to what is returned",
expected_output="pass or fail based on what is returned",
agent=router,
is_start=True,
task_type="decision",
condition={
"pass": ["process_valid"],
"fail": "exit"
}
)

processing_task = Task(
name="process_valid",
description="Process validated input",
expected_output="Processed data ready for final step",
agent=processor1,
next_tasks=["final_process"]
)

final_task = Task(
name="final_process",
description="Generate final output",
expected_output="Final processed result",
agent=processor2
)

# Create and run workflow
workflow = PraisonAIAgents(
agents=[router, processor1, processor2],
tasks=[routing_task, processing_task, final_task],
process="workflow",
verbose=True
)

print("\nStarting Routing Workflow...")
print("=" * 50)

results = workflow.start()

print("\nWorkflow Results:")
print("=" * 50)
for task_id, result in results["task_results"].items():
if result:
task_name = result.description
print(f"\nTask: {task_name}")
print(f"Result: {result.raw}")
print("-" * 50)
83 changes: 83 additions & 0 deletions agents/routing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
from praisonaiagents.agent import Agent
from praisonaiagents.task import Task
from praisonaiagents.agents import PraisonAIAgents
import time

def get_time_check():
current_time = int(time.time())
result = "even" if current_time % 2 == 0 else "odd"
print(f"Time check: {current_time} is {result}")
return result

# Create specialized agents
router = Agent(
name="Router",
role="Input Router",
goal="Evaluate input and determine routing path",
instructions="Analyze input and decide whether to proceed or exit",
tools=[get_time_check]
)

processor1 = Agent(
name="Processor 1",
role="Secondary Processor",
goal="Process valid inputs that passed initial check",
instructions="Process data that passed the routing check"
)

processor2 = Agent(
name="Processor 2",
role="Final Processor",
goal="Perform final processing on validated data",
instructions="Generate final output for processed data"
)

# Create tasks with routing logic
routing_task = Task(
name="initial_routing",
description="check the time and return according to what is returned",
expected_output="pass or fail based on what is returned",
agent=router,
is_start=True,
task_type="decision",
condition={
"pass": ["process_valid"],
"fail": ["process_invalid"]
}
)

processing_task = Task(
name="process_valid",
description="Process validated input",
expected_output="Processed data ready for final step",
agent=processor1,
)

final_task = Task(
name="process_invalid",
description="Generate final output",
expected_output="Final processed result",
agent=processor2
)

# Create and run workflow
workflow = PraisonAIAgents(
agents=[router, processor1, processor2],
tasks=[routing_task, processing_task, final_task],
process="workflow",
verbose=True
)

print("\nStarting Routing Workflow...")
print("=" * 50)

results = workflow.start()

print("\nWorkflow Results:")
print("=" * 50)
for task_id, result in results["task_results"].items():
if result:
task_name = result.description
print(f"\nTask: {task_name}")
print(f"Result: {result.raw}")
print("-" * 50)
Loading

0 comments on commit 8b39d2b

Please sign in to comment.