Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Meta-programming library #1116

Closed
wants to merge 8 commits into from
Closed
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions erasure/theories/ErasureFunction.v
Original file line number Diff line number Diff line change
Expand Up @@ -800,8 +800,8 @@ Section fix_sigma.
pose proof (abstract_env_ext_wf _ wfΣ') as [wf].
sq.
eapply subject_reduction_closed in HT; tea.
eapply inversion_Prod in HT as [? [? [? [t0 ?]]]].
now eapply typing_wf_local in t0. pcuic. pcuic.
eapply inversion_Prod in HT as [? [? [? [t0' ?]]]].
now eapply typing_wf_local in t0'. pcuic. pcuic.
- clear rprod is_arity rsort a0.
intros Σ' wfΣ'; specialize (H Σ' wfΣ').
repeat specialize_Σ wfΣ'.
Expand Down
6 changes: 3 additions & 3 deletions pcuic/theories/Syntax/PCUICOnFreeVars.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
(* Distributed under the terms of the MIT license. *)
From Coq Require Import Morphisms.
Require Import ssreflect ssrfun ssrbool.
From Coq Require Import ssreflect ssrfun ssrbool.
From MetaCoq.Utils Require Import utils MCPred.
From MetaCoq.Common Require Import config.
From MetaCoq.PCUIC Require Import PCUICAst PCUICAstUtils PCUICCases PCUICInduction
Expand Down Expand Up @@ -649,7 +649,7 @@ Qed.
Definition on_free_vars_ctx_k P n ctx :=
alli (fun k => (on_free_vars_decl (shiftnP k P))) n (List.rev ctx).

Definition predA {A} (p q : pred A) : simpl_pred A :=
Definition predA {A} (p q : ssrbool.pred A) : simpl_pred A :=
[pred i | p i ==> q i].

Definition eq_simpl_pred {A} (x y : simpl_pred A) :=
Expand Down Expand Up @@ -699,7 +699,7 @@ Proof.
now move=> f g; rewrite /eq_simpl_pred => Hfg.
Qed.

Lemma orPL (p q : pred nat) : (predA p (predU p q)) =1 predT.
Lemma orPL (p q : ssrbool.pred nat) : (predA p (predU p q)) =1 predT.
Proof.
intros i. rewrite /predA /predU /=.
rewrite (ssrbool.implybE (p i)).
Expand Down
2 changes: 1 addition & 1 deletion template-coq/_CoqProject.in
Original file line number Diff line number Diff line change
Expand Up @@ -35,4 +35,4 @@ theories/MonadAst.v
theories/Constants.v

# Extract the extractable monad, built by _PluginProject
theories/Extraction.v
theories/Extraction.v
1 change: 1 addition & 0 deletions template-coq/_TemplateCoqProject.in
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ src/plugin_core.mli
src/plugin_core.ml

theories/Loader.v
theories/Lib.v
theories/All.v

# A checker of well-formedness in MetaCoq and Coq
Expand Down
6 changes: 4 additions & 2 deletions template-coq/gen-src/specFloat.ml.orig
Original file line number Diff line number Diff line change
Expand Up @@ -341,7 +341,8 @@ let coq_SFadd prec emax x y =
let ez = Z.min ex ey in
binary_normalize prec emax
(Z.add (cond_Zopp sx (Zpos (fst (shl_align mx ex ez))))
(cond_Zopp sy (Zpos (fst (shl_align my ey ez))))) ez false)
(cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
ez false)

(** val coq_SFsub :
coq_Z -> coq_Z -> spec_float -> spec_float -> spec_float **)
Expand Down Expand Up @@ -369,7 +370,8 @@ let coq_SFsub prec emax x y =
let ez = Z.min ex ey in
binary_normalize prec emax
(Z.sub (cond_Zopp sx (Zpos (fst (shl_align mx ex ez))))
(cond_Zopp sy (Zpos (fst (shl_align my ey ez))))) ez false)
(cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
ez false)

(** val new_location_even : coq_Z -> coq_Z -> location **)

Expand Down
3 changes: 2 additions & 1 deletion template-coq/theories/All.v
Original file line number Diff line number Diff line change
Expand Up @@ -16,4 +16,5 @@ From MetaCoq.Template Require Export
UnivSubst (* Substitution of universe instances *)
Typing (* Typing judgment *)
TemplateMonad (* The TemplateMonad *)
Loader (* The plugin *).
Loader (* The plugin *)
Lib (* Meta-programming facilities *).
251 changes: 251 additions & 0 deletions template-coq/theories/AstUtils.v
Original file line number Diff line number Diff line change
Expand Up @@ -464,3 +464,254 @@ Ltac nth_leb_simpl :=
replace n' with n in H' by lia; rewrite -> H in H'; injection H'; intros; subst
| _ => lia || congruence || solve [repeat (f_equal; try lia)]
end.

(** * Traversal functions. *)

Section TraverseWithBinders.
Context {Acc : Type} {A : Type} (a : A) (lift : aname -> A -> A).

Definition lift_names : list aname -> A -> A :=
fun names a => List.fold_right lift a names.

Definition map_predicate_with_binders (f : A -> term -> term) (p : predicate term) : predicate term :=
let a_return := lift_names p.(pcontext) a in
{| puinst := p.(puinst)
; pparams := List.map (f a) p.(pparams)
; pcontext := p.(pcontext)
; preturn := f a_return p.(preturn) |}.

Definition map_branch_with_binders (f : A -> term -> term) (b : branch term) : branch term :=
let a_body := lift_names b.(bcontext) a in
{| bcontext := b.(bcontext) ; bbody := f a_body b.(bbody) |}.

(** [map_term_with_binders a lift f t] maps [f] on the immediate subterms of [t].
It carries an extra data [a] (typically a lift index) which is processed by [lift]
(which typically add 1 to [a]) at each binder traversal.
It is not recursive and the order in which subterms are processed is not specified. *)
Definition map_term_with_binders (f : A -> term -> term) (t : term) : term :=
match t with
| tRel _ | tVar _ | tSort _ | tConst _ _ | tInd _ _ | tConstruct _ _ _ | tInt _ | tFloat _ | tString _ => t
| tEvar n ts => tEvar n (List.map (f a) ts)
| tCast b k t => tCast (f a b) k (f a t)
| tProd name ty body => tProd name (f a ty) (f (lift name a) body)
| tLambda name ty body => tLambda name (f a ty) (f (lift name a) body)
| tLetIn name def ty body => tLetIn name (f a def) (f a ty) (f (lift name a) body)
| tApp func args => tApp (f a func) (List.map (f a) args)
| tProj proj t => tProj proj (f a t)
(* For [tFix] and [tCoFix] we have to take care to lift [a]
only when processing the body of the (co)fixpoint. *)
| tFix defs i =>
let a_body := lift_names (List.map dname defs) a in
let on_def := map_def (f a) (f a_body) in
tFix (List.map on_def defs) i
| tCoFix defs i =>
let a_body := lift_names (List.map dname defs) a in
let on_def := map_def (f a) (f a_body) in
tCoFix (List.map on_def defs) i
| tCase ci pred x branches =>
tCase ci (map_predicate_with_binders f pred) (f a x) (List.map (map_branch_with_binders f) branches)
| tArray l t def ty => tArray l (List.map (f a) t) (f a def) (f a ty)
end.

Definition fold_predicate_with_binders (f : A -> Acc -> term -> Acc) (acc : Acc) (p : predicate term) : Acc :=
let a_return := lift_names p.(pcontext) a in
let acc := List.fold_left (f a) p.(pparams) acc in
f a_return acc p.(preturn).

Definition fold_branch_with_binders (f : A -> Acc -> term -> Acc) (acc : Acc) (b : branch term) : Acc :=
let a_body := lift_names b.(bcontext) a in
f a_body acc b.(bbody).

(** Fold version of [map_term_with_binders]. *)
Definition fold_term_with_binders (f : A -> Acc -> term -> Acc) (acc : Acc) (t : term) : Acc :=
match t with
| tRel _ | tVar _ | tSort _ | tConst _ _ | tInd _ _
| tConstruct _ _ _ | tInt _ | tFloat _ | tString _ => acc
| tEvar n ts => List.fold_left (f a) ts acc
| tCast b k t => let acc := f a acc b in f a acc t
| tProd name ty body => let acc := f a acc ty in f (lift name a) acc body
| tLambda name ty body => let acc := f a acc ty in f (lift name a) acc body
| tLetIn name def ty body =>
let acc := f a acc def in
let acc := f a acc ty in
f (lift name a) acc body
| tApp func args => List.fold_left (f a) (func :: args) acc
| tProj proj t => f a acc t
| tFix defs i =>
let a_body := lift_names (List.map dname defs) a in
let acc := List.fold_left (f a) (List.map dtype defs) acc in
List.fold_left (f a_body) (List.map dbody defs) acc
| tCoFix defs i =>
let a_body := lift_names (List.map dname defs) a in
let acc := List.fold_left (f a) (List.map dtype defs) acc in
List.fold_left (f a_body) (List.map dbody defs) acc
| tCase ci pred x branches =>
let acc := fold_predicate_with_binders f acc pred in
let acc := f a acc x in
List.fold_left (fold_branch_with_binders f) branches acc
| tArray l t def ty =>
let acc := List.fold_left (f a) t acc in
let acc := f a acc def in
f a acc ty
end.

End TraverseWithBinders.

Section TraverseWithBindersM.
Import MCMonadNotation.

Context {M : Type -> Type} `{Monad M} {Acc : Type} {A : Type} {a : A} {liftM : aname -> A -> M A}.

Definition lift_namesM (names : list aname) (a : A) : M A :=
let fix loop names a :=
match names with
| [] => ret a
| n :: names => loop names =<< liftM n a
end
in
loop (List.rev names) a.

Definition map_defM {A B} (tyf bodyf : A -> M B) (d : def A) : M (def B) :=
mlet dtype <- tyf d.(dtype) ;;
mlet dbody <- bodyf d.(dbody) ;;
ret (mkdef _ d.(dname) dtype dbody d.(rarg)).

Definition map_predicate_with_bindersM (f : A -> term -> M term) (p : predicate term) : M (predicate term) :=
mlet a_return <- lift_namesM p.(pcontext) a ;;
mlet pparams <- monad_map (f a) p.(pparams) ;;
mlet preturn <- f a_return p.(preturn) ;;
ret (mk_predicate p.(puinst) pparams p.(pcontext) preturn).

Definition map_branch_with_bindersM (f : A -> term -> M term) (b : branch term) : M (branch term) :=
mlet a_body <- lift_namesM b.(bcontext) a ;;
mlet bbody <- f a_body b.(bbody) ;;
ret (mk_branch b.(bcontext) bbody).

(** Monadic variant of [map_term_with_binders]. *)
Definition map_term_with_bindersM (f : A -> term -> M term) (t : term) : M term :=
match t with
| tRel _ | tVar _ | tSort _ | tConst _ _ | tInd _ _
| tConstruct _ _ _ | tInt _ | tFloat _ | tString _ => ret t
| tEvar n ts =>
mlet ts <- monad_map (f a) ts ;;
ret (tEvar n ts)
| tCast b k t =>
mlet b <- f a b ;;
mlet t <- f a t ;;
ret (tCast b k t)
| tProd name ty body =>
mlet ty <- f a ty ;;
mlet a_body <- liftM name a ;;
mlet body <- f a_body body ;;
ret (tProd name ty body)
| tLambda name ty body =>
mlet ty <- f a ty ;;
mlet a_body <- liftM name a ;;
mlet body <- f a_body body ;;
ret (tLambda name ty body)
| tLetIn name def ty body =>
mlet def <- f a def ;;
mlet ty <- f a ty ;;
mlet a_body <- liftM name a ;;
mlet body <- f a_body body ;;
ret (tLetIn name def ty body)
| tApp func args =>
mlet func <- f a func ;;
mlet args <- monad_map (f a) args ;;
ret (tApp func args)
| tProj proj t =>
mlet t <- f a t ;;
ret (tProj proj t)
(* For [tFix] and [tCoFix] we have to take care to lift [a]
only when processing the body of the (co)fixpoint. *)
| tFix defs i =>
mlet a_body <- lift_namesM (List.map dname defs) a ;;
let on_def := map_defM (f a) (f a_body) in
mlet defs <- monad_map on_def defs ;;
ret (tFix defs i)
| tCoFix defs i =>
mlet a_body <- lift_namesM (List.map dname defs) a ;;
let on_def := map_defM (f a) (f a_body) in
mlet defs <- monad_map on_def defs ;;
ret (tCoFix defs i)
| tCase ci pred x branches =>
mlet pred <- map_predicate_with_bindersM f pred ;;
mlet x <- f a x ;;
mlet branches <- monad_map (map_branch_with_bindersM f) branches ;;
ret (tCase ci pred x branches)
| tArray l t def ty =>
mlet t <- monad_map (f a) t ;;
mlet def <- f a def ;;
mlet ty <- f a ty ;;
ret (tArray l t def ty)
end.

Definition fold_predicate_with_bindersM (f : A -> Acc -> term -> M Acc) (acc : Acc) (p : predicate term) : M Acc :=
mlet a_return <- lift_namesM p.(pcontext) a ;;
mlet acc <- monad_fold_left (f a) p.(pparams) acc ;;
f a_return acc p.(preturn).

Definition fold_branch_with_bindersM (f : A -> Acc -> term -> M Acc) (acc : Acc) (b : branch term) : M Acc :=
mlet a_body <- lift_namesM b.(bcontext) a ;;
f a_body acc b.(bbody).

(** Monadic variant of [fold_term_with_binders]. *)
Definition fold_term_with_bindersM (f : A -> Acc -> term -> M Acc) (acc : Acc) (t : term) : M Acc :=
match t with
| tRel _ | tVar _ | tSort _ | tConst _ _ | tInd _ _
| tConstruct _ _ _ | tInt _ | tFloat _ | tString _ => ret acc
| tEvar n ts => monad_fold_left (f a) ts acc
| tCast b k t => mlet acc <- f a acc b ;; f a acc t
| tProd name ty body =>
mlet a_body <- liftM name a ;;
mlet acc <- f a acc ty ;;
f a_body acc body
| tLambda name ty body =>
mlet a_body <- liftM name a ;;
mlet acc <- f a acc ty ;;
f a_body acc body
| tLetIn name def ty body =>
mlet a_body <- liftM name a ;;
mlet def <- f a acc def ;;
mlet acc <- f a acc ty ;;
f a_body acc body
| tApp func args => monad_fold_left (f a) (func :: args) acc
| tProj proj t => f a acc t
| tFix defs i =>
mlet a_body <- lift_namesM (List.map dname defs) a ;;
mlet acc <- monad_fold_left (f a) (List.map dtype defs) acc ;;
monad_fold_left (f a_body) (List.map dbody defs) acc
| tCoFix defs i =>
mlet a_body <- lift_namesM (List.map dname defs) a ;;
mlet acc <- monad_fold_left (f a) (List.map dtype defs) acc ;;
monad_fold_left (f a_body) (List.map dbody defs) acc
| tCase ci pred x branches =>
mlet acc <- fold_predicate_with_bindersM f acc pred ;;
mlet acc <- f a acc x ;;
monad_fold_left (fold_branch_with_bindersM f) branches acc
| tArray l t def ty =>
mlet acc <- monad_fold_left (f a) t acc ;;
mlet acc <- f a acc def ;;
f a acc ty
end.

End TraverseWithBindersM.


(** [map_term f t] maps [f] on the immediate subterms of [t].
It is not recursive and the order in which subterms are processed is not specified. *)
Definition map_term (f : term -> term) (t : term) : term :=
@map_term_with_binders unit tt (fun _ _ => tt) (fun _ => f) t.

(** Monadic variant of [map_term]. *)
Definition map_termM {M} `{Monad M} (f : term -> M term) (t : term) : M term :=
@map_term_with_bindersM M _ unit tt (fun _ _ => ret tt) (fun _ => f) t.

(** [fold_term f acc t] folds [f] on the immediate subterms of [t].
It is not recursive and the order in which subterms are processed is not specified. *)
Definition fold_term {Acc} (f : Acc -> term -> Acc) (acc : Acc) (t : term) : Acc :=
@fold_term_with_binders Acc unit tt (fun _ _ => tt) (fun _ => f) acc t.

(** Monadic variant of [fold_term]. *)
Definition fold_termM {M} `{Monad M} {Acc} (f : Acc -> term -> M Acc) (acc : Acc) (t : term) : M Acc :=
@fold_term_with_bindersM M _ Acc unit tt (fun _ _ => ret tt) (fun _ => f) acc t.
Loading
Loading