Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add nds_h validation script #198

Merged
merged 3 commits into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 65 additions & 1 deletion nds-h/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ time.csv \
--property_file ../utils/properties/aqe-on.properties
```

User can also use `spark-submit` to submit `ndsH_power.py` directly.
User can also use `spark-submit` to submit `nds_h_power.py` directly.

To simplify the performance analysis process, the script will create a local CSV file to save query(including TempView creation) and corresponding execution time. Note: please use `client` mode(set in your `power_run_gpu.template` file) when running in Yarn distributed environment to make sure the time log is saved correctly in your local path.

Expand All @@ -257,4 +257,68 @@ nds_h_power.py \
parquet_sf3k \
./nds_query_streams/query_0.sql \
time.csv
```

## Data Validation
To validate query output between Power Runs with and without GPU, we provide [nds_h_validate.py](nds_h_validate.py) to do the job.

Arguments supported by `nds_h_validate.py`

```text
usage: nds_h_validate.py [-h] [--input1_format INPUT1_FORMAT]
[--input2_format INPUT2_FORMAT]
[--max_errors MAX_ERRORS] [--epsilon EPSILON]
[--ignore_ordering] [--use_iterator]
[--json_summary_folder JSON_SUMMARY_FOLDER]
[--sub_queries SUB_QUERIES]
input1 input2 query_stream_file

positional arguments:
input1 path of the first input data.
input2 path of the second input data.
query_stream_file query stream file that contains NDS queries in
specific order.

options:
-h, --help show this help message and exit
--input1_format INPUT1_FORMAT
data source type for the first input data. e.g.
parquet, orc. Default is: parquet.
--input2_format INPUT2_FORMAT
data source type for the second input data. e.g.
parquet, orc. Default is: parquet.
--max_errors MAX_ERRORS
Maximum number of differences to report.
--epsilon EPSILON Allow for differences in precision when comparing
floating point values. Given 2 float numbers: 0.000001
and 0.000000, the diff of them is 0.000001 which is
less than 0.00001, so we regard this as acceptable and
will not report a mismatch.
--ignore_ordering Sort the data collected from the DataFrames before
comparing them.
--use_iterator When set, use `toLocalIterator` to load one partition
at a time into driver memory, reducing memory usage at
the cost of performance because processing will be
single-threaded.
--json_summary_folder JSON_SUMMARY_FOLDER
path of a folder that contains json summary file for
each query.
--sub_queries SUB_QUERIES
comma separated list of queries to compare. If not
specified, all queries in the stream file will be
compared. e.g. "query1,query2,query3". Note, use
"_part1" and "_part2" suffix e.g. query15_part1,
query15_part2
```

Example command to compare output data of two queries:

```bash
cd shared
./spark-submit-template power_run_cpu.template \
../nds-h/nds_h_validate.py \
<query_output_cpu> \
<query_output_gpu> \
<query_stream>.sql \
--ignore_ordering
```
4 changes: 3 additions & 1 deletion nds-h/nds_h_power.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,9 @@ def run_one_query(spark_session,
output_path,
output_format):
df = spark_session.sql(query)
if not output_path:
# query15_part1 and query15_part3 are create/drop view queries
empty_output_queries = ['query15_part1', 'query15_part3']
if query_name in empty_output_queries or not output_path:
df.collect()
else:
ensure_valid_column_names(df).write.format(output_format).mode('overwrite').save(
Expand Down
305 changes: 305 additions & 0 deletions nds-h/nds_h_validate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# -----
#
# Certain portions of the contents of this file are derived from TPC-H version 3.0.1
# (retrieved from www.tpc.org/tpc_documents_current_versions/current_specifications5.asp).
# Such portions are subject to copyrights held by Transaction Processing Performance Council (“TPC”)
# and licensed under the TPC EULA (a copy of which accompanies this file as “TPC EULA” and is also
# available at http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp) (the “TPC EULA”).
#
# You may not use this file except in compliance with the TPC EULA.
# DISCLAIMER: Portions of this file is derived from the TPC-H Benchmark and as such any results
# obtained using this file are not comparable to published TPC-H Benchmark results, as the results
# obtained from using this file do not comply with the TPC-H Benchmark.
#

import argparse
import glob
import json
import math
import os
import re
import time
from decimal import Decimal

from pyspark.sql import DataFrame, SparkSession
from pyspark.sql.types import DoubleType, FloatType
from pyspark.sql.functions import col

from nds_h_power import gen_sql_from_stream, get_query_subset

SKIP_QUERIES = [
'query15_part1', # create view query
'query15_part3', # drop view query
]
SKIP_COLUMNS = {
'query18': ['o_orderkey'], # non-deterministic output: https://github.com/NVIDIA/spark-rapids-benchmarks/pull/198#issuecomment-2403837688
}


def compare_results(spark_session: SparkSession,
input1: str,
input2: str,
input1_format: str,
input2_format: str,
ignore_ordering: bool,
query_name: str,
use_iterator=False,
max_errors=10,
epsilon=0.00001) -> bool:
"""Giving 2 paths of input query output data, compare them row by row, value by value to see if
the results match or not.

Args:
spark_session (SparkSession): Spark Session to hold the comparison
input1 (str): path for the first input data
input2 (str): path for the second input data
input1_format (str): data source format for input1, e.g. parquet, orc
input2_format (str): data source format for input2, e.g. parquet, orc
ignore_ordering (bool): whether ignoring the order of input data.
If true, we will order by ourselves.
query_name (str): Query name.
use_iterator (bool, optional): When set to true, use `toLocalIterator` to load one partition
at a time into driver memory, reducing memory usage at the cost of performance because
processing will be single-threaded. Defaults to False.
max_errors (int, optional): Maximum number of differences to report. Defaults to 10.
epsilon (float, optional): Allow for differences in precision when comparing floating point
values. Defaults to 0.00001.

Returns:
bool: True if result matches otherwise False
"""
if query_name in SKIP_QUERIES:
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Skip checking query15_part1 and query15_part3 since these are create/drop view queries and no output for these queries.

return True

df1 = spark_session.read.format(input1_format).load(input1)
df2 = spark_session.read.format(input2_format).load(input2)
count1 = df1.count()
count2 = df2.count()

if(count1 == count2):
#TODO: need partitioned collect for NDS? there's no partitioned output currently
result1 = collect_results(df1, query_name, ignore_ordering, use_iterator)
result2 = collect_results(df2, query_name, ignore_ordering, use_iterator)

errors = 0
i = 0
while i < count1 and errors < max_errors:
lhs = next(result1)
rhs = next(result2)
if not rowEqual(list(lhs), list(rhs), epsilon):
print(f"Row {i}: \n{list(lhs)}\n{list(rhs)}\n")
errors += 1
i += 1
print(f"Processed {i} rows")

if errors == max_errors:
print(f"Aborting comparison after reaching maximum of {max_errors} errors")
return False
elif errors == 0:
print("Results match")
return True
else:
print(f"There were {errors} errors")
return False
else:
print(f"DataFrame row counts do not match: {count1} != {count2}")
return False

def collect_results(df: DataFrame,
query_name: str,
ignore_ordering: bool,
use_iterator: bool):
# skip output for specific query columns
if query_name in SKIP_COLUMNS:
df = df.drop(*SKIP_COLUMNS[query_name])
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Drop column o_orderkey of the output of query 18 due to the non-deterministic results


# apply sorting if specified
non_float_cols = [col(field.name) for field in df.schema.fields
if field.dataType.typeName() not in (FloatType.typeName(), DoubleType.typeName())]
float_cols = [col(field.name) for field in df.schema.fields
if field.dataType.typeName() in (FloatType.typeName(), DoubleType.typeName())]
if ignore_ordering:
df = df.sort(non_float_cols + float_cols)

# TODO: do we still need this for NDS? Query outputs are usually 1 - 100 rows,
# there should'nt be memory pressure.
if use_iterator:
it = df.toLocalIterator()
else:
print("Collecting rows from DataFrame")
t1 = time.time()
rows = df.collect()
t2 = time.time()
print(f"Collected {len(rows)} rows in {t2-t1} seconds")
it = iter(rows)
return it


def rowEqual(row1, row2, epsilon):
# only simple types in a row for NDS results
return all([compare(lhs, rhs, epsilon) for lhs, rhs in zip(row1, row2)])


def compare(expected, actual, epsilon=0.00001):
#TODO 1: we can optimize this with case-match after Python 3.10
#TODO 2: we can support complex data types like nested type if needed in the future.
# now NDS only contains simple data types.
if isinstance(expected, float) and isinstance(actual, float):
# Double is converted to float in pyspark...
if math.isnan(expected) and math.isnan(actual):
return True
return math.isclose(expected, actual, rel_tol=epsilon)

if isinstance(expected, Decimal) and isinstance(actual, Decimal):
return math.isclose(expected, actual, rel_tol=epsilon)

return expected == actual

def iterate_queries(spark_session: SparkSession,
input1: str,
input2: str,
input1_format: str,
input2_format: str,
ignore_ordering: bool,
query_dict: dict,
use_iterator=False,
max_errors=10,
epsilon=0.00001):
# Iterate each query folder for a Power Run output
# Providing a list instead of hard-coding all queires is to satisfy the arbitary queries run.
unmatch_queries = []
for query_name in query_dict.keys():
sub_input1 = input1 + '/' + query_name
sub_input2 = input2 + '/' + query_name
print(f"=== Comparing Query: {query_name} ===")
result_equal = compare_results(spark_session,
sub_input1,
sub_input2,
input1_format,
input2_format,
ignore_ordering,
query_name,
use_iterator=use_iterator,
max_errors=max_errors,
epsilon=epsilon)
if result_equal == False:
unmatch_queries.append(query_name)
if len(unmatch_queries) != 0:
print(f"=== Unmatch Queries: {unmatch_queries} ===")
return unmatch_queries

def update_summary(prefix, unmatch_queries):
"""set the queryValidationStatus field in json summary file.
If the queryStatus is 'Completed' or 'CompletedWithTaskFailures' but validation failed,
set to 'Fail'.
If the queryStatus is 'Completed' or 'CompletedWithTaskFailures' and validation passed,
set to 'Pass'.
If the queryStatus is 'Failed',
set to 'NotAttempted'.

Args:
prefix (str): folder of the json summary files
unmatch_queries ([str]): list of queries that failed validation
"""
if not os.path.exists(prefix):
raise Exception("The json summary folder doesn't exist.")
print(f"Updating queryValidationStatus in folder {prefix}.")
for query_name in query_dict.keys():
summary_wildcard = prefix + f'/*{query_name}-*.json'
file_glob = glob.glob(summary_wildcard)

# Expect only one summary file for each query
if len(file_glob) > 1:
raise Exception(f"More than one summary file found for query {query_name} in folder {prefix}.")
if len(file_glob) == 0:
raise Exception(f"No summary file found for query {query_name} in folder {prefix}.")

filename = file_glob[0]
with open(filename, 'r') as f:
summary = json.load(f)
if query_name in unmatch_queries:
if 'Completed' in summary['queryStatus'] or 'CompletedWithTaskFailures' in summary['queryStatus']:
summary['queryValidationStatus'] = ['Fail']
else:
summary['queryValidationStatus'] = ['NotAttempted']
else:
summary['queryValidationStatus'] = ['Pass']
with open(filename, 'w') as f:
json.dump(summary, f, indent=2)

if __name__ == "__main__":
parser = parser = argparse.ArgumentParser()
parser.add_argument('input1',
help='path of the first input data.')
parser.add_argument('input2',
help='path of the second input data.')
parser.add_argument('query_stream_file',
help='query stream file that contains NDS queries in specific order.')
parser.add_argument('--input1_format',
default='parquet',
help='data source type for the first input data. e.g. parquet, orc. Default is: parquet.')
parser.add_argument('--input2_format',
default='parquet',
help='data source type for the second input data. e.g. parquet, orc. Default is: parquet.')
parser.add_argument('--max_errors',
help='Maximum number of differences to report.',
type=int,
default=10)
parser.add_argument('--epsilon',
type=float,
default=0.00001,
help='Allow for differences in precision when comparing floating point values.' +
' Given 2 float numbers: 0.000001 and 0.000000, the diff of them is 0.000001' +
' which is less than 0.00001, so we regard this as acceptable and will not' +
' report a mismatch.')
parser.add_argument('--ignore_ordering',
action='store_true',
help='Sort the data collected from the DataFrames before comparing them.')
parser.add_argument('--use_iterator',
action='store_true',
help='When set, use `toLocalIterator` to load one partition at a' +
' time into driver memory, reducing memory usage at the cost of performance' +
' because processing will be single-threaded.')
parser.add_argument('--json_summary_folder',
help='path of a folder that contains json summary file for each query.')
parser.add_argument('--sub_queries',
type=lambda s: [x.strip() for x in s.split(',')],
help='comma separated list of queries to compare. If not specified, all queries ' +
'in the stream file will be compared. e.g. "query1,query2,query3". Note, use ' +
'"_part1" and "_part2" suffix e.g. query15_part1, query15_part2')
args = parser.parse_args()
query_dict = gen_sql_from_stream(args.query_stream_file)
# if set sub_queries, only compare the specified queries
if args.sub_queries:
query_dict = get_query_subset(query_dict, args.sub_queries)
session_builder = SparkSession.builder.appName("Validate Query Output").getOrCreate()
unmatch_queries = iterate_queries(session_builder,
args.input1,
args.input2,
args.input1_format,
args.input2_format,
args.ignore_ordering,
query_dict,
use_iterator=args.use_iterator,
max_errors=args.max_errors,
epsilon=args.epsilon)
if args.json_summary_folder:
update_summary(args.json_summary_folder, unmatch_queries)