Skip to content

Commit

Permalink
Finish 3.8.2-3.8.5 and small fixes in chap. 2, 3, 6 (#29)
Browse files Browse the repository at this point in the history
* small fixes in chap6

* small fixes in Chap 2 and 3

* 3.8.2 finished

* 3.8.3-5 finished
  • Loading branch information
maki49 authored Jul 5, 2023
1 parent d2a0a3d commit cdc5260
Show file tree
Hide file tree
Showing 4 changed files with 222 additions and 65 deletions.
5 changes: 3 additions & 2 deletions Chaps/Chap2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2075,13 +2075,13 @@ \subsection{矩阵元规则的推导}
都无法使积分不为0(因为自旋轨道相互正交).
因此
\begin{equation}
\braket{K|\mathcal{O}_1|K} = 0 \qquad \textit{情形3}
\braket{K|\mathcal{O}_1|L} = 0 \qquad \textit{情形3}
\end{equation}

现在来考察双电子算符,
一般的双电子算符矩阵元有如下形式:
\begin{equation}
\braket{K|\mathcal{O}_2|K} = \braket{K|r^{-1}_{12}+r^{-1}_{13}+r^{-1}_{14}+\cdots+r^{-1}_{23}+r^{-1}_{24}+\cdots+r^{-1}_{N-1,N}}
\braket{K|\mathcal{O}_2|L} = \braket{K|r^{-1}_{12}+r^{-1}_{13}+r^{-1}_{14}+\cdots+r^{-1}_{23}+r^{-1}_{24}+\cdots+r^{-1}_{N-1,N}|L}
\end{equation}
其中的加和遍及所有电子对.
由于行列式并不区分全同电子,
Expand Down Expand Up @@ -3317,6 +3317,7 @@ \subsection{自旋算符}
37).
写出来就是
\begin{align}
\label{2.254}
\ts_z\ket{\chi_i\chi_j\cdots\chi_k} = \frac{1}{2}(N^\alpha - N_\beta)\ket{\chi_i\chi_j\cdots\chi_k} = M_S\ket{\chi_i\chi_j\cdots\chi_k}
\end{align}
式中$N^\alpha$是具有$\alpha$自旋的轨道数目,
Expand Down
Loading

0 comments on commit cdc5260

Please sign in to comment.