Skip to content

OrthoPlanes/op3d

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OP3D

Teaser image

Official PyTorch implementation of the ICCV 2023 paper:

OrthoPlanes: A Novel Representation for Better 3D-Awareness of GANs
Honglin He1,2*, Zhuoqian Yang1,3*, Shikai Li1, Bo Dai1, Wayne Wu1
1Shanghai AI Laboratory, 2Tsinghua University, 3EPFL
* equal contribution
† corresponding author

[project page] [paper]

Requirements

  • We have done all testing and development using V100 and A100 GPUs.
  • Use the following commands with Anaconda to create and activate your Python environment:
    • conda env create -f environment.yml
    • conda activate op3d
  • For smpl-pose conditional inference and training:

Quick Start

Pre-trained networks are stored as *.pkl files that can be referenced using local filenames.

Model Zoo

Structure Dataset Link Type
Orthoplanes-7-10 FFHQ op3d-ffhq-512-128-withc-7plane.pkl Unconditional (w cam-cond)
Orthoplanes-8-10 FFHQ op3d-ffhq-512-128-noc-8plane.pkl Unconditional (w/o cam-cond)
Orthoplanes-12-10 FFHQ op3d-ffhq-512-128-withc-12plane.pkl Unconditional (w cam-cond)
Orthoplanes-8-10 AFHQv2-Cats op3d-afhq-512-128-withc-8plane.pkl Unconditional (w cam-cond)
Orthoplanes-4-0 SHHQ op3d-shhq-512-64-4plane-linear.pkl Unconditional (w/o cam-cond)
Orthoplanes-4-6 SHHQ op3d-shhq-512-64-4plane-frequency.pkl Unconditional (w/o cam-cond)
Orthoplanes-8-10 SHHQ op3d-shhq-512-64-8plane-frequency.pkl Unconditional (w/o cam-cond)
Orthoplanes-8-10 SHHQ op3d-conditional-shhq.pkl Conditional
Link of Processed SMPL parameters for SHHQ
  • Orthoplanes-$K$-$L$ means that using $K$ planes along each axis with $L$-power positional encoding for each plane.
  • Due to the acknowledgement of SHHQ, we will provide only smpl annotations for inference only. For training, we will provide the scripts and test-cases for unit-test only.

Generating samples

# [Uncond] Generate images and shapes (as .mrc files) using pre-trained model

python op3d/gen_samples/unconditional/gen_samples.py --outdir=out \
--trunc=0.5 --shapes=true --seeds=0-3 --network=/path/to/*pkl


[to use conditionl generation, unzip the processed zip first and rename it to "processed_SHHQ_pose_cond"]
# [SMPL-Cond] Generate images and shapes (as .mrc files) using pre-trained model

python op3d/gen_samples/conditional/gen_samples.py --outdir=out \
--trunc=0.5 --shapes=true --seeds=0-3 --pose_id=5 --network=/path/to/*pkl

To visualize a .mrc shape in ChimeraX (https://www.cgl.ucsf.edu/chimerax/):

  1. Import the .mrc file with File > Open
  2. Change step size to 1
  3. Change level set to 10 for FFHQ, AFHQv2-Cats and 40 for SHHQ.
  4. In the Lighting menu in the top bar, change lighting to "Full"

Training and Evaluation

Preparing datasets

1. Uncondtional

Please refer to EG3D (https://github.com/NVlabs/eg3d) to prepare FFHQ and AFHQv2-Cats dataset.

2. SMPL-Condtional

2.1 prepare PARE (https://github.com/mkocabas/PARE) to infer pose conditions from real world data

2.2 prepare your own dataset, put all images for training in a folder like './raw_images'

[Note: Ensure that all images are cropped to 512 x 512]

2.3 get pose conditions by

[PARE Folder]
python scripts/demo.py --image_folder ./raw_images --output_folder ./pose_pare

2.4 prepare your dataset to eg3d format

[OP3D Folder]
[Crop each image to 512 x 512 before process]
python train_scripts/export_data.py --image_folder ./raw_images --smpl_folder ./pose_pare 
--output_folder ./processed_image --n_images 40000

2.5 process PARE results

[OP3D Folder]
[n_poses should be equal to n_images]
python train_scripts/export_pose.py --smpl_folder ./pose_pare 
--output_folder ./processed_pose_cond --n_poses 40000

Training

[Unconditional]
# Take FFHQ as an example, train from scratch with raw neural rendering resolution=64, using 8 GPUs.
python op3d/train_scripts/train_unconditional.py --outdir=./save/ffhq --cfg=ffhq --data=FFHQ_512.zip \ 
--batch=32 --gpus=8 --gamma=1 --gen_pose_cond=True --plane_number=8 --fourier_L=10

# To save the training time, set metics to none
python op3d/train_scripts/train_unconditional.py --outdir=./save/ffhq --cfg=ffhq --data=FFHQ_512.zip \ 
--batch=32 --gpus=8 --gamma=1 --gen_pose_cond=True --plane_number=8 --fourier_L=10
--metrics=none

[Conditional]
[replace the model and dataset in the train scipts]
python op3d/train_scripts/train_conditional.py --outdir=./save/shhq_cond --cfg=shhq  --data=SHHQ_512.zip \
--batch=32 --gpus=8 --gamma=20 --gen_pose_cond=False 
--plane_number=8 --fourier_L=10
--metrics=none

Evaluation

# Take FFHQ as an example, evaluate fid.
python op3d/test_scripts/cal_metrics.py --network=op3d-ffhq-512-128-withc-12plane.pkl \
--gpus=4 --metrics=fid50k_full --data=FFHQ_512.zip

Updates

  • [27/04/2024] Update for Conditional Generation. [Data PreProcession, Inferenece, Training]
  • [29/11/2023] Code released!
  • [28/09/2023] Technical report released!
  • [13/07/2023] Our work has been accepted by ICCV2023!

TODO List

  • Release technical report.
  • Release code for inference and training of unconditional generation.
  • Release pretrained models for unconditional FFHQ, AFHQv2-Cats, SHHQ.
  • Release SMPL parameters for smpl-pose conditional generation.
  • Release code for smpl-pose conditional generation.
  • Release code for preparing SMPL parameters for custom dataset training.

Citation

@inproceedings{he2023orthoplanes,
  title={OrthoPlanes: A Novel Representation for Better 3D-Awareness of GANs},
  author={He, Honglin and Yang, Zhuoqian and Li, Shikai and Dai, Bo and Wu, Wayne},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={22996--23007},
  year={2023}
}

Related Works

(ECCV 2022) StyleGAN-Human: A Data-Centric Odyssey of Human Generation [Demo Video] | [Project Page] | [Paper]

(ICCV 2023) 3DHumanGAN: 3D-Aware Human Image Generation with 3D Pose Mapping [Project Page] | [Paper]

Acknowledgements

This repository uses code from other open-source repositories. We thank the contributors for sharing their wonderful work.

Karras, Tero, et al. "Training generative adversarial networks with limited data." Advances in neural information processing systems 33 (2020): 12104-12114.

Chan E R, Lin C Z, Chan M A, et al. Efficient geometry-aware 3D generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 16123-16133.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •