Skip to content

A 256-bit block cipher based on SPN design, supporting key sizes of 256/384/512 bits

License

Notifications You must be signed in to change notification settings

RichadoWonosas/RWSE2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RichadoWonosas's Symmetric Encryption Version 2 (RWSE2)

CAUTION: This cryptographic algorithm is not in any standard and its security is not yet verified.

RichadoWonosas's Symmetric Encryption Version 2 (RWSE2) is an encryption algorithm designed by RichadoWonosas. Despite version 2, it is the first published version. The design is deeply affected by Rijndael.

1. Introduction

RWSE2 is based on the design principle of Substitution-Permutation Network (SPN). RWSE2 is a block cipher with a fixed block size of 256 bits and a key size of 256, 384 or 512 bits.

Bigger key size requires more rounds of operations to achieve stronger security, and the amount of rounds are as follows:

  • 12 rounds for 256-bit keys.
  • 15 rounds for 384-bit keys.
  • 18 rounds for 512-bit keys.

Each round consists of several sub-operations, that includes:

  • Add Round Key ($RK$): Adding the key of the corresponding round to the block.
  • Substitute Bytes ($SB$): Use a substitution box (S-box) per byte to make changes to the block.
  • RW's Shuffle ($SH$): A self-invertible linear transformation, that is, executing $SH$ operation twice in a row to a block results in the original block and equals to nothing happened.

Besides, an Expand Key operation is introduced for generating round keys from the original key.

Section 2 introduces notations of the block of the algorithm. RWSE2's structure is depicted in Section 3. Section 4 focuses on Add Round Key operation. In Section 5, we describe the construction about S-box and $SB$ operation. Then, we show the structure of Shuffle operation with the whole linear transformation in Section 6. The Expand Key operation is constructed in Section 7.

2. Notations of the Block

RWSE2 has a 256-bit block for encryption or decryption. We use $B$ to represent the block.

$B$ consists of 4 quad-words:

$$ B = \left[ \begin{matrix} q_0\\ q_1\\ q_2\\ q_3\\ \end{matrix} \right]. $$

Each quad-word has 8 bytes:

$$ q = \left[ \begin{matrix} b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & b_{7} \end{matrix} \right]. $$

In other words,

$$ B = \left[ \begin{matrix} b_{0, 0} & b_{0, 1} & b_{0, 2} & b_{0, 3} & b_{0, 4} & b_{0, 5} & b_{0, 6} & b_{0, 7}\\ b_{1, 0} & b_{1, 1} & b_{1, 2} & b_{1, 3} & b_{1, 4} & b_{1, 5} & b_{1, 6} & b_{1, 7}\\ b_{2, 0} & b_{2, 1} & b_{2, 2} & b_{2, 3} & b_{2, 4} & b_{2, 5} & b_{2, 6} & b_{2, 7}\\ b_{3, 0} & b_{3, 1} & b_{3, 2} & b_{3, 3} & b_{3, 4} & b_{3, 5} & b_{3, 6} & b_{3, 7}\\ \end{matrix} \right]. $$

Say the value of $q$ is $|q|$, then $|q|$ follows little endian:

$$ |q| = \sum_{j = 0}^{7}{b_{j} \cdot (2^{8})^j}. $$

In S-box, a byte $b$ is also splitted into 8 bits (We use $d$ for digit to represent bit, preventing from confusing with $b$ for byte):

$$ b = \left[ \begin{matrix} d_0\\ d_1\\ d_2\\ d_3\\ d_4\\ d_5\\ d_6\\ d_7\\ \end{matrix} \right]. $$

3. RWSE2's Structure

The whole RWSE2 algorithm has a special 0th round with other rounds:

stateDiagram
    M: Plaintext
    C: Ciphertext
    RK0: Add Round Key
    SH0: RW's Shuffle
    SBn: Substitute Bytes
    SHn: RW's Shuffle
    RKn: Add Round Key
    R0: Round 0
    R+: Round = Round + 1
    Rn: Round n
    state if <<choice>>

    M-->R0
    R0-->R+
    R+-->Rn
    Rn-->if
    if-->C: Final Round
    if-->R+: Other\nRound
    state R0 {
        [*]-->RK0
        RK0-->SH0
        SH0-->[*]
    }
    state Rn {
        [*]-->SBn
        SBn-->SHn
        SHn-->RKn
        RKn-->[*]
    }
Loading

Encryption and decryption shares the same structure, but decryption uses S-Box Inverse instead of S-Box itself, and some extra operations to the round key will be done. More details are in Section 7.2.

4. Add Round Key

Every round uses 4 quad-words of round key to add round key to the block. Say $rk_i$ is the $i$-th quad-word of all round keys starting from 0th, then the round key for $i$-th round is

$$ R_i = \left[ \begin{matrix} rk_{4i}\\ rk_{4i+1}\\ rk_{4i+2}\\ rk_{4i+3}\\ \end{matrix} \right]. $$

So the Add Round Key operation in $i$-th round to the block is

$$ RK_i(B) = B \oplus R_i = \left[ \begin{matrix} q_0 \oplus rk_{4i}\\ q_1 \oplus rk_{4i+1}\\ q_2 \oplus rk_{4i+2}\\ q_3 \oplus rk_{4i+3}\\ \end{matrix} \right] $$

where operation $\oplus$ represents bitwise exclusive or (XOR) operation.

5. Substitute Bytes

5.1. Substitution Box

A substitution box (S-box) is used to perform the byte-wise substitution. The formula of S-box is

$$ Sb(b) = (A\cdot(\text{0xa4})^b) \oplus (\text{0xe3}) $$

where the power operation defines on Galois Field $\text{GF}(2^8)$ with the primitive polynomial

$$g(x) = x^8 + x^4 + x^3 + x^2 + 1.$$

Specially, define $(\text{0xa4})^{(\text{0xff})} = (\text{0x00})$ because the original value $(\text{0xa4})^{(\text{0xff})} = (\text{0xa4})^{(\text{0x00})} = (\text{0x01})$.

$A$ defines as the following matrix

$$ A = \left[ \begin{matrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1\\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1\\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1\\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1\\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1\\ \end{matrix} \right] $$

and the multiplication $\cdot$ is a bit-scale matrix multiplication.

The full S-Box and its inverse can be found in Appendix A.

5.2. Substitute Quad-Word

A quad-word consists of 8 bytes. For quad-word $q$, the Substitute Quad-Word operation $Sq$ is to substitute all 8 bytes using S-Box. That is,

$$ \begin{align*} Sq(q) & = Sq(\left[ \begin{matrix} b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & b_{7} \end{matrix} \right]) \\ & = \left[ \begin{matrix} Sb(b_{0}) & Sb(b_{1}) & Sb(b_{2}) & Sb(b_{3}) & Sb(b_{4}) & Sb(b_{5}) & Sb(b_{6}) & Sb(b_{7}) \end{matrix} \right]. \end{align*} $$

5.3. Substitute Bytes

A block consists of 4 quad-words. For the block $B$, the Substitute Bytes operation $SB$ is to substitute all 4 quad-words using Substitute Quad-Word. That is,

$$ \begin{align*} SB(B) & = SB(\left[ \begin{matrix} q_0\\ q_1\\ q_2\\ q_3\\ \end{matrix} \right])\\ & = \left[ \begin{matrix} Sq(q_0)\\ Sq(q_1)\\ Sq(q_2)\\ Sq(q_3)\\ \end{matrix} \right]\\ & = \left[ \begin{matrix} Sb(b_{0, 0}) & Sb(b_{0, 1}) & Sb(b_{0, 2}) & Sb(b_{0, 3}) & Sb(b_{0, 4}) & Sb(b_{0, 5}) & Sb(b_{0, 6}) & Sb(b_{0, 7}) \\ Sb(b_{1, 0}) & Sb(b_{1, 1}) & Sb(b_{1, 2}) & Sb(b_{1, 3}) & Sb(b_{1, 4}) & Sb(b_{1, 5}) & Sb(b_{1, 6}) & Sb(b_{1, 7}) \\ Sb(b_{2, 0}) & Sb(b_{2, 1}) & Sb(b_{2, 2}) & Sb(b_{2, 3}) & Sb(b_{2, 4}) & Sb(b_{2, 5}) & Sb(b_{2, 6}) & Sb(b_{2, 7}) \\ Sb(b_{3, 0}) & Sb(b_{3, 1}) & Sb(b_{3, 2}) & Sb(b_{3, 3}) & Sb(b_{3, 4}) & Sb(b_{3, 5}) & Sb(b_{3, 6}) & Sb(b_{3, 7}) \\ \end{matrix} \right]. \end{align*} $$

6. RW's Shuffle

RW's Shuffle is a sequence of three basic operations:

  1. Shuffle $S$: A permutation that only applies inside quad-words.
  2. Mix Column $M$: A matrix multiplication with elements on $\text{GF}(2^8)$, in which the matrix used is self-invertible.
  3. Reshuffle $S^{-1}$: The inverse of Shuffle $S$.

So the RW's Shuffle is defined as

$$ SH(B) = S^{-1}(M(S(B))). $$

The following chart shows the structure of RW's Shuffle.

flowchart LR
    A[Original\nBlock]:::word
    B[Shuffle]:::op
    C[Mix\nColumn]:::op
    D[Inverse\nShuffle]:::op
    E[Shuffled\nBlock]:::word

    classDef word fill:#edf,stroke:#96c,color:#639
    classDef op fill:#def,stroke:#69c,color:#369

    subgraph RW's Shuffle
        direction LR
        B-->C
        C-->D
    end

    A-->B
    D-->E
Loading

6.1. Single Shuffle/Reshuffle Operation

Two constants used for shuffle operation: Upper Mask $u = \text{0x9292929292929292}$ and Lower Mask $l = \text{0x6d6d6d6d6d6d6d6d}$. They satisfy:

  1. $u \oplus l = \text{0xffffffffffffffff} = (\underbrace{111 \dots 11}_{64})_2$.
  2. $u \lll 8 = u$, $u \ggg 8 = u$, $l \lll 8 = l$, $l \ggg 8 = l$, where $\lll$ and $\ggg$ represents cyclic left and right shift of quad-word.

The single shuffle operation $s$ operates on quad-word, and receive two more parameters: $sd$ for digits to shift, $so$ for shuffle operation. $s$ is as follows:

$$ s(q, sd, so) = ((q \land u) \lll (8 \cdot so) \oplus (q \land l)) \ggg sd $$

where $\land$ stands for bitwise and (AND) operation.

The single reshuffle operation, the inverse of the single shuffle operation, is defined as follows:

$$ s^{-1}(q, sd, so) = ((q \lll sd) \land u) \ggg (8 \cdot so) \oplus ((q \lll sd) \land l). $$

The following charts show the procedure of a single shuffle operation:

flowchart LR
    subgraph Single Reshuffle
        direction LR
        A1[Original\nQ-word]
        B1[Original\nUpper]
        C1[Lower\nHalf]
        D1[Upper\nHalf]
        E1[Shifted\nQ-word]
        F1[Shuffled\nQ-word]
        F1--Cyclic\nLeft Shift-->E1
        E1--Upper\nMask-->D1
        D1--Cyclic\nRight Shift--->B1
        E1--Lower\nMask-->C1
        B1--Merge-->A1
        C1--Merge--->A1
    end
    subgraph Single Shuffle
        direction LR
        A[Original\nQ-word]
        B[Upper\nHalf]
        C[Lower\nHalf]
        D[Shifted\nUpper]
        E[Merged\nQ-word]
        F[Shuffled\nQ-word]
        A--Upper\nMask-->B
        A--Lower\nMask-->C
        B--Cyclic\nLeft Shift--->D
        D--Merge-->E
        C--Merge--->E
        E--Cyclic\nRight Shift-->F
    end
Loading

6.2. Shuffle/Reshuffle

Shuffle operation is defined as

$$ S(B) = S(\left[ \begin{matrix} q_0\\ q_1\\ q_2\\ q_3\\ \end{matrix} \right]) = \left[ \begin{matrix} s(q_0, 5, 1)\\ s(q_1, 23, 3)\\ s(q_2, 41, 5)\\ s(q_3, 59, 7)\\ \end{matrix} \right], $$

with Reshuffle operation defined as

$$ S^{-1}(B) = S^{-1}(\left[ \begin{matrix} q_0\\ q_1\\ q_2\\ q_3\\ \end{matrix} \right]) = \left[ \begin{matrix} s^{-1}(q_0, 5, 1)\\ s^{-1}(q_1, 23, 3)\\ s^{-1}(q_2, 41, 5)\\ s^{-1}(q_3, 59, 7)\\ \end{matrix} \right]. $$

6.3. Mix Column

The Mix Column operation $M$ is as follows:

$$ \begin{align*} M(B) & = X \cdot B\\ & = \left[ \begin{matrix} 03 & 01 & 02 & 01\\ 01 & 03 & 01 & 02\\ 02 & 01 & 03 & 01\\ 01 & 02 & 01 & 03\\ \end{matrix} \right] \cdot \left[ \begin{matrix} b_{0, 0} & b_{0, 1} & b_{0, 2} & b_{0, 3} & b_{0, 4} & b_{0, 5} & b_{0, 6} & b_{0, 7}\\ b_{1, 0} & b_{1, 1} & b_{1, 2} & b_{1, 3} & b_{1, 4} & b_{1, 5} & b_{1, 6} & b_{1, 7}\\ b_{2, 0} & b_{2, 1} & b_{2, 2} & b_{2, 3} & b_{2, 4} & b_{2, 5} & b_{2, 6} & b_{2, 7}\\ b_{3, 0} & b_{3, 1} & b_{3, 2} & b_{3, 3} & b_{3, 4} & b_{3, 5} & b_{3, 6} & b_{3, 7}\\ \end{matrix} \right]. \end{align*} $$

Each byte represents an element on $\text{GF}(2^8)$, so the multiplication and addition for each element follows the ones on $\text{GF}(2^8)$.

The matrix

$$ X = \left[ \begin{matrix} 03 & 01 & 02 & 01\\ 01 & 03 & 01 & 02\\ 02 & 01 & 03 & 01\\ 01 & 02 & 01 & 03\\ \end{matrix} \right] $$

is a self-invertible matrix, that is,

$$ X^2 = \left[ \begin{matrix} 03 & 01 & 02 & 01\\ 01 & 03 & 01 & 02\\ 02 & 01 & 03 & 01\\ 01 & 02 & 01 & 03\\ \end{matrix} \right] \cdot \left[ \begin{matrix} 03 & 01 & 02 & 01\\ 01 & 03 & 01 & 02\\ 02 & 01 & 03 & 01\\ 01 & 02 & 01 & 03\\ \end{matrix} \right] = \left[ \begin{matrix} 01 & 00 & 00 & 00\\ 00 & 01 & 00 & 00\\ 00 & 00 & 01 & 00\\ 00 & 00 & 00 & 01\\ \end{matrix} \right] = I. $$

So the Mix Column operation satisfies that

$$ M(M(B)) = X \cdot X \cdot B = B, $$

that is, the Mix Column operation is self-invertible.

6.4. RW's Shuffle's Self-Invertibility

RW's Shuffle $SH$ is self-invertible, because

$$ \begin{align*} SH(SH(B)) & = S^{-1}(M(S(S^{-1}(M(S(B)))))) \\ & = S^{-1}(M(M(S(B)))) \\ & = S^{-1}(S(B)) \\ & = B. \end{align*} $$

7. Expand Key

The Expand Key operation is to expand the inputted key into round keys. Notations of round keys are in Section 4.

For key length of 256/384/512 bits, say the key constant

$$ nk = \left\lbrace \begin{align*} 4,\ & \text{key length = 256 bits} \\ 6,\ & \text{key length = 384 bits} \\ 8,\ & \text{key length = 512 bits} \\ \end{align*} \right., $$

and the amount of rounds

$$ r = \left\lbrace \begin{align*} 12,\ & \text{key length = 256 bits} \\ 15,\ & \text{key length = 384 bits} \\ 18,\ & \text{key length = 512 bits} \\ \end{align*} \right.. $$

To protect the inputted key, a sequence of round constants is defined in bytes ($rc$) and in quad-words ($rcon$):

$$ \begin{align*} rc_i &= (02){16}^{i} \text{ in GF} (2^8), \ rcon_i &= \left[ \begin{matrix} rc{8i} & rc_{8i + 1} & rc_{8i + 2} & rc_{8i + 3} & rc_{8i + 4} & rc_{8i + 5} & rc_{8i + 6} & rc_{8i + 7} \ \end{matrix} \right]. \end{align*} $$

7.1. Encryption Key Generation

Let $k_i$ be the $i$-th quad-word of the inputted key. As $rk_i$ represents $i$-th quad-word of all round keys, we can derive round keys using following operations:

$$ rk_i = \left\lbrace \begin{align*} & k_i, && \text{if } 0 \leqslant i < nk ,\\ & rk_{i - nk} \oplus Sq(s(rk_{i - 1}, 25, 4)) \oplus rcon_{(i / nk) - 1}, && \text{if } nk \leqslant i < 4(r + 1) \text{ and } i \equiv 0 \ (\text{mod } nk),\\ & rk_{i - nk} \oplus Sq(rk_{i - 1}), && \text{if } nk \leqslant i < 4(r + 1) \text{ and } i \equiv \frac{nk}{2} \ (\text{mod } nk),\\ & rk_{i - nk} \oplus rk_{i - 1}, && \text{otherwise}.\\ \end{align*} \right. $$

In which $Sq$ is the Substitute Quad-Word operation defined in Section 5.2 and $s$ is the Single Shuffle operation defined in Section 6.1.

7.2. Decryption Key Generation

If the decryption structure is the same as the encryption structure depicted in Section 3, then the order of $SH$ and $RK$ is reversed in all rounds except 0th round and the last round. Besides changing the order of round key blocks $R_i$ used, an additional operation should be used.

Because $SH$ is a linear function, it can be easily proven that

$$ SH(B \oplus R_i) = SH(B) \oplus SH(R_i). $$

Because $SH$ is self-invertible, the decryption key of $i$-th round

$$ R_i' = \left\lbrace \begin{align*} & R_{r - i}, && \text{ if } i = 0 \text{ or } i = r,\\ & SH(R_{r - i}), && \text{ otherwise}.\\ \end{align*} \right. $$

Appendix A. S-Box and S-Box Inverse

S-Box:

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _a _b _c _d _e _f
0_ 28 50 a7 91 08 8f 2c 61 d6 a3 a0 79 bd 84 97 47
1_ 46 e1 9d 5b 1c b7 98 cd 11 43 77 90 af f3 ea 26
2_ 7d 8c f5 a5 ef b0 70 78 1a f8 51 00 ed ce c8 87
3_ 4e 83 7f f2 4d 5a bb cb 5e 8a ba 6c 22 4c fd c7
4_ 0d 19 21 95 39 fe 1e c9 20 32 45 38 59 62 0f 67
5_ 99 6a 6d 85 30 3b 80 a6 36 74 49 6b ca f9 f6 7c
6_ 2b 89 63 a8 1b 5f 2d c6 aa 65 e7 d2 92 d1 4b 15
7_ 72 06 a2 07 05 7b c3 3c 68 13 3d cf 6f fb 88 c4
8_ d4 dd 18 86 e9 ff b9 b5 e6 75 ee 17 0c be 5d 53
9_ 7e 55 31 9c fc 60 71 df 66 3e 16 ab c2 9b 14 d5
a_ 7a 64 40 ae 54 96 e0 3a 27 da f0 33 e2 44 9f 25
b_ a4 48 cc b6 3f b1 d7 04 dc bf fa 2f b8 12 9a b3
c_ a9 bc 23 eb 81 01 4a b2 0e c0 e5 ac 2a 2e 1f 6e
d_ 5c f4 02 93 76 37 d3 35 ad 8d 52 d9 29 f7 db 57
e_ 4f 24 03 34 0a f1 94 9e 82 d8 8e 8b 1d 10 e4 0b
f_ 56 e8 58 c5 73 a1 de c1 42 d0 ec 69 b4 41 09 e3

S-Box Inverse:

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _a _b _c _d _e _f
0_ 2b c5 d2 e2 b7 74 71 73 04 fe e4 ef 8c 40 c8 4e
1_ ed 18 bd 79 9e 6f 9a 8b 82 41 28 64 14 ec 46 ce
2_ 48 42 3c c2 e1 af 1f a8 00 dc cc 60 06 66 cd bb
3_ 54 92 49 ab e3 d7 58 d5 4b 44 a7 55 77 7a 99 b4
4_ a2 fd f8 19 ad 4a 10 0f b1 5a c6 6e 3d 34 30 e0
5_ 01 2a da 8f a4 91 f0 df f2 4c 35 13 d0 8e 38 65
6_ 95 07 4d 62 a1 69 98 4f 78 fb 51 5b 3b 52 cf 7c
7_ 26 96 70 f4 59 89 d4 1a 27 0b a0 75 5f 20 90 32
8_ 56 c4 e8 31 0d 53 83 2f 7e 61 39 eb 21 d9 ea 05
9_ 1b 03 6c d3 e6 43 a5 0e 16 50 be 9d 93 12 e7 ae
a_ 0a f5 72 09 b0 23 57 02 63 c0 68 9b cb d8 a3 1c
b_ 25 b5 c7 bf fc 87 b3 15 bc 86 3a 36 c1 0c 8d b9
c_ c9 f7 9c 76 7f f3 67 3f 2e 47 5c 37 b2 17 2d 7b
d_ f9 6d 6b d6 80 9f 08 b6 e9 db a9 de b8 81 f6 97
e_ a6 11 ac ff ee ca 88 6a f1 84 1e c3 fa 2c 8a 24
f_ aa e5 33 1d d1 22 5e dd 29 5d ba 7d 94 3e 45 85

Appendix B. Trivia

  • The matrix $A$ used in Section 5.1 is a circulant matrix generated from value 0xd3, which is the product of 'R' (0x52) and 'W' (0x57) on Galois Field $\text{GF}(2^8)$.

  • The constant value 0xa4 used in Section 5.1 represents the sum of hex value of string "RichadoWonosas", which is exactly 0x5a4.

  • Another constant value 0xe3 used in Section 5.1 is chosen to make the S-Box a cyclic permutation.

  • The Upper Mask $u$ used in Section 6.1 is inspired from a certain rhythm type.

  • The four digits-to-shifts set in Section 6.2 (5, 23, 41, 59) form an arithmetic progression with all elements are prime number, and the average of them is 32, half of the bit amount of quad-word.

  • The matrix $X$ used in Section 6.3 is the 27th candidate of all small-index self-invertible matrices generated by ascending exhaustive search.

About

A 256-bit block cipher based on SPN design, supporting key sizes of 256/384/512 bits

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages