Skip to content

Ruifeng-Chen/unstable_baselines

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


License

Unstable Baselines(USB) is designed to serve as a quick-start guide for Reinforcement Learning beginners and a codebase for agile algorithm development. The algorithms strictly follows the original implementations, and the performance of Unstable Baselines matches those in the original implementations. USB is currently maintained by researchers from lamda-rl.


Stable Algorithms (Runnable and has equivalent performance to that of the original implementations):

Unstable Algorithms (Runnable but needs tuning)

Algorithm TODO List


Current Performance

Quick Start

Install

git clone --recurse-submodules https://github.com/x35f/unstable_baselines.git
cd unstable_baselines
conda env create -f env.yaml 
conda activate rl_base
pip install -e .

To run an algorithm

python3 /path/to/algorithm/main.py /path/to/algorithm/configs/some-config.json args(optional)

Install environments (optional)

#install metaworld for meta_rl benchmark
cd envs/metaworld
pip install -e .
#install atari
pip install gym[all]

TODO List

  • Add comments for algorithms
  • Add Documentation

About

Re-implementations of SOTA RL algorithms.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.2%
  • Other 0.8%