This repository is a collection of readings shared on Twitter about computational logic, interactive theorem proving and functional programming.
The collection is sorted by the date of its publication on Twitter.
At the end of each article you will find tags related to the systems it uses or its content.
- Irrational numbers from THE BOOK. ~ Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Autoformalization with large language models. ~ Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, Christian Szegedy. #ITP #IsabelleHOL #MachineLearning
- All prime numbers have primitive roots. ~ Ruben Gamboa, Woodrow Gamboa. #ITP #ACL2
- A formalization of finite group theory. ~ David M. Russinoff. #ITP #ACL2 #Math
- Formalising Gödel’s incompleteness theorems, II: Σ-formulas. ~ Lawrence C. Paulson (@LawrPaulson). #ITP #IsabelleHOL #Logic #Math
- A free group of rotations of rank 2. ~ Jagadish Bapanapally, Ruben Gamboa. #ITP #ACL2 #Math
- VWSIM: A circuit simulator. ~ Warren A. Hunt Jr., Vivek Ramanathan, J Strother Moore. #ITP #ACL2
- A mechanized proof of bounded convergence time for the distributed perimeter surveillance system (DPSS) algorithm A. ~ David Greve, Jennifer Davis, Laura Humphrey. #ITP #ACL2
- Using ACL2 to teach students about software testing. ~ Ruben Gamboa, Alicia Thoney. #ITP #ACL2
- Lean 4 tutorial (NASA formal methods 2022). ~ Leonardo de Moura, Sebastian Ullrich. #ITP #LeanProver
- ACL2s systems programming. ~ Andrew T. Walter, Panagiotis Manolios. #ITP #ACL2
- Verified implementation of an efficient term-rewriting algorithm for multiplier verification on ACL2. ~ Mertcan Temel. #ITP #ACL2
- Modeling asymptotic complexity using ACL2. ~ William D. Young. #ITP #ACL2
- Reasoning about vectors using an SMT theory of sequences. ~ Ying Sheng et als. #SMT
- Defining corecursive functions in Coq using approximations. ~ Vlad Rusu, David Nowak. #ITP #Coq
- Why I am learning Haskell (The language for the Cardano blockchain). ~ C. L. Beard. #Haskell #FunctionalProgramming
- A formal correctness proof for an EDF scheduler implementation. ~ Florian Vanhems, Vlad Rusu, David Nowak, Gilles Grimaud. #ITP #Coq
- Formalizing the face lattice of polyhedra. ~ Xavier Allamigeon, Ricardo D. Katz, Pierre-Yves Strub. #ITP #Coq #Math
- An approach to translating Haskell programs to Agda and reasoning about them. ~ Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, Lisandra Silva. #ITP #Agda #Haskell #FunctionalProgramming
- Using binary mode in Haskell. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- From logic to functional logic programs. ~ Michael Hanus. #LogicProgramming #FunctionalProgramming
- Fifty years of Prolog and beyond. ~ P. Körner et als. #Prolog #LogicProgramming
- (SWI-)prolog examples and discussion. ~ David Wessels. #Prolog #LogicProgramming
- Mechanized analysis of Anselm’s modal ontological argument. ~ John Rushby. #ITP #PVS #Logic
- Interactive IO. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- El matemático que revolucionó la informática antes de que existiera la profesión de informático como tal. ~ @Alvy #Matemáticas #Computación
- #PLconProlog Tema 5: Programación lógica de orden superior. #Prolog #ProgramaciónLógica
- Formalising Gödel’s incompleteness theorems, I. ~ Lawrence C. Paulson (@LawrPaulson). #ITP #IsabelleHOL #Logic #Math
- Constructive analysis in the Agda proof assistant. ~ Zachary Murray. #ITP #Agda #Math
- Explainable Artificial Intelligence in Data Science (From foundational issues towards socio-technical considerations). ~ Joaquín Borrego-Díaz, Juan Galán-Páez. #AI #XAI #DataScience
- Model checking in Haskell (Part 1: Transition systems and invariants). ~ Ben Selfridge. #Haskell #FunctionalProgramming #ModelChecking
- Abductive reasoning in intuitionistic propositional logic via theorem synthesis. ~ Paul Tarau. #Prolog #LogicProgramming #Logic
- Announcing monad-logger-aeson: Structured logging in Haskell for cheap. ~ Jason Shipman (@jship_). #Haskell #FunctionalProgramming
- How to write software with mathematical perfection. ~ Sheon Han. #Math #CompSci
- The man who revolutionized computer science with math. #CompSci #Math
- PVS embeddings of propositional and quantified modal logic. ~ John Rushby. #ITP #PVS #Logic
- Scalable SAT solving in the cloud. ~ Dominik Schreiber, Peter Sanders. #Logic #SATSolvers
- Lessons Learned from formalizing local convex integration. ~ Floris van Doorn. #ITP #LeanProver #Math
- [[https://youtu.be/Evru5QHt-KU][Formalising local convex integration in Lean [Video]]]. ~ Floris van Doorn. #ITP #LeanProver #Math
- [[https://youtu.be/QBLL48Z8gcg][Formalized mathematics and differential topology [Video]]]. ~ Patrick Massot. #ITP #LeanProver #Math
- Formally verified lifting of C-compiled x86-64 binaries. ~ F. Verbeek, J. Bockenek, Z. Fu, B. Ravindran. #ITP #IsabelleHOL
- Fermat’s Last Theorem for regular primes in Lean. ~ Riccardo Brasca. #ITP #LeanProver #Math
- Let’s program a calculus student II (Turning symbolic differentiation automatic). ~ Iago Leal de Freitas. #Haskell #FunctionalProgramming #Math
- Making type-safe internet bots with Haskell. ~ Wander Hillen. #Haskell #FunctionalProgramming
- Comparing strict and lazy. ~ Arnaud Spiwack. #Haskell #OCaml #FunctionalProgramming
- Getting started: basic Isabelle/jEdit tricks. ~ Lawrence C. Paulson (@LawrPaulson). #ITP #IsabelleHOL
- A brief look at untyped lambda calculus. ~ Nikolay Yakimov. #LambdaCalculus #FunctionalProgramming
- Digit expansions (in Isabelle/HOL). ~ Jonas Bayer, Marco David, Abhik Pal, Benedikt Stock. #ITP #IsabelleHOL #Math
- PA-Boot: A formally verified processor authentication protocol for SMP secure boot. ~ Zhuoruo Zhang, Rui Chang, Qinming Dai, Ku Ren. #ITP #IsabelleHOL
- A theorem prover and countermodel constructor for provability logic in HOL Light. ~ Marco Maggesi, Cosimo Perini Brogi. #ITP #HOL_Light #Logic
- Wetzel: Formalisation of an undecidable problem linked to the continuum hypothesis. ~ Lawrence C Paulson. #ITP #IsabelleHOL #Math
- More programming than programming: teaching formal methods in a software engineering programme. ~ James Noble, David Streader, Isaac Oscar Gariano, Miniruwani Samarakoon. #FormalMethods #Dafny
- Clique is not solvable by monotone circuits of polynomial size (in Isabelle/HOL). ~ René Thiemann. #ITP #IsabelleHOL
- A review of algebraic-style reasoning for type theory. ~ Ende Jin. #ITP #Agda #FunctionalProgramming
- Highschool (Secondary School) trigonometry: Some exercices with Mizar. ~ Roland Coghetto. #ITP #Mizar #Math
- Deep specification and proof preservation for the CoqTL transformation language. ~ Zheng Cheng, Massimo Tisi. #ITP #Coq
- Learning higher-order logic programs from failures. ~ Stanisław J. Purgał, David M. Cerna, Cezary Kaliszyk. #MachineLearning #ILP #LogicProgramming
- Haskell in 100 seconds. #Haskell #FunctionalProgramming
- Cómo entender de qué van los lenguajes de programación (y otras técnicas) en vídeos de 100 segundos. ~ @Alvy #Programación
- Handling files more easily. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Existential optics. ~ Marco Perone. #Haskell #FunctionalProgramming
- The Isabelle ENIGMA. ~ Zarathustra A. Goertzel, Jan Jakubův, Cezary Kaliszyk, Miroslav Olšák, Jelle Piepenbrock, Josef Urban. #ITP #IsabelleHOL #MachineLearning
- Getting started with Isabelle: baby examples, cool proof methods. ~ Lawrence C. Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Introduction to Haskell IO. ~ Gabriella Gonzalez (@GabriellaG439). #Haskell #FunctionalProgramming
- Why does Haskell’s take function accept insufficient elements? ~ Gabriella Gonzalez (@GabriellaG439). #Haskell #FunctionalProgramming
- A tutorial implementation of a dependently typed lambda calculus. ~ Andres Löh, Conor McBride, Wouter Swierstra. #Haskell #FunctionalProgramming #LambdaCalculus
- 11 companies that use Haskell in production. ~ Gints Dreimanis (@NaeosPsy). #Haskell #FunctionalProgramming
- Depth comonads. ~ Donnacha Oisín Kidney (@oisdk). #Haskell #FunctionalProgramming
- Emacs for professionals. ~ Ramin Honary. #Emacs
- FindFacts: A scalable theorem search. ~ Fabian Huch, Alexander Krauss. #ITP #IsabelleHOL
- Introductory resources to type theory for language implementers. ~ Gabriella Gonzalez (@GabriellaG439). #Haskell #FunctionalProgramming #TypeTheory
- Fisher’s inequality: Linear algebraic proof techniques for combinatorics. ~ Chelsea Edmonds, Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Formalizing a diophantine representation of the set of prime numbers. ~ Karol Pąk, Cezary Kaliszyk. #ITP #Mizar #Math
- Passport: Improving automated formal verification using identifiers. ~ Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, Talia Ringer. #ITP #Coq #MachineLearning
- Calligraphy tutorial. ~ Jonas Carpay (@jonascarpay). #Haskell #FunctionalProgramming
- Generalizing folds in Haskell. ~ Danila Fedorin. #Haskell #FunctionalProgramming
- Let’s program a calculus student. ~ Iago Leal de Freitas. #Haskell #FunctionalProgramming #Math
- On commenting code. ~ Michael Peyton Jones (@mpeytonjones). #Programming
- Announcing an automatic theorem proving project. ~ Timothy Gowers (@wtgowers). #ATP #ITP #Math #AI
- How can it be feasible to find proofs? ~ W. T. Gowers (@wtgowers). #ATP #ITP #Math #AI
- Simple type theory is not too simple: Grothendieck’s schemes without dependent types. ~ Anthony Bordg, Lawrence Paulson, Wenda Li. #ITP #IsabelleHOL #Math
- The hidden dangers of Haskell’s Ratio type. ~ Neil Mayhew. #Haskell #FunctionalProgramming
- Traverse: Fully generalized loops. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Wetzel’s problem and the continuum hypothesis. ~ Lawrence C. Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Formalizing a diophantine representation of the set of prime numbers. ~ Karol Pąk, Cezary Kaliszyk. #ITP #Mizar #Math
- Introduction to Haskell typeclasses. ~ Gints Dreimanis. #Haskell #FunctionalProgramming
- Building a bulletin board using twain and friends. ~ Gil Mizrahi (@_gilmi). #Haskell #FunctionalProgramming
- Effectful loops: sequence and mapM. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Logic Gallery. ~ David Marans. #Logic
- Optimización bi-nivel, matemáticas y Julia. ~ Jesús-Adolfo Mejía (@_jmejia) y Camilo Chacón Sartori (@camilo_chacon_s). #Podcast #Matemáticas #Programación #Informática #JuliaLang
- Platicando sobre “Historia de los lenguajes de programación” ~ Manuel Rubio (@MRonErlang). #Programación H/T @camilo_chacon_s
- Linear algebra for computer science. ~ M. Thulasidas. #eBook #Math
- Beyond notations: Hygienic macro expansion for theorem proving languages. ~ Sebastian Ullrich & Leonardo de Moura. #ITP #LeanProver
- Leapfrog: Certified equivalence for protocol parsers. ~ Ryan Doenges et als. #ITP #Coq
- Free monads in the real world. ~ Arnau Abella. #Haskell #FunctionalProgramming
- A Prolog application for reasoning on maths puzzles with diagrams. ~ Riccardo Buscaroli, Federico Chesani, Giulia Giuliani, Daniela Loreti. & Paola Mello. #Prolog #LogicProgramming #Math
- Recursive functionals and quantifiers of finite types I.~ S. C. Kleene (1959). #Logic #Math #CompSci
- Recursive functionals and quantifiers of finite types II.~ S. C. Kleene (1963). #Logic #Math #CompSci
- The generalized multiset ordering is NP-complete. ~ René Thiemann & Lukas Schmidinger. #ITP #IsabelleHOL
- Create recursion-schemes using comonads. ~ Luc Tielen (@luctielen). #Haskell #FunctionalProgramming
- Namespaced DeBruijn indices. ~ Gabriella Gonzalez (@GabriellaG439). #Haskell #FunctionalProgramming
- Why should you try Elm? ~ Álvaro Sánchez (@Forensor). #Elm #FunctionalProgramming
- Introduction to metamathematics. ~ Stephen Cole Kleene (1952). #eBook #Logic #Math via @internetarchive
- Type-theoretic signatures for algebraic theories and inductive types. ~ András Kovács. #PhD_Thesis #ITP #Agda
- Why are you being constructive? ~ Lawrence C. Paulson (@LawrPaulson). #Logic #Math
- Proofs and programs (Course notes). ~ Colin Riba. #Logic #LambdaCalculus
- Research notes with Org-Mode. ~ Sam Wallace #Emacs #OrgMode
- Formalization of randomized approximation algorithms for frequency moments (in Isabelle/HOL). ~ Emin Karayel. #ITP #IsabelleHOL
- A combinator library for prefix-free codes (in Isabelle/HOL). ~ Emin Karayel. #ITP #IsabelleHOL
- Introduction to doctests in Haskell. ~ Nurlan Alkuatov. #Haskell #FunctionalProgramming
- Combining ideas: mapAccum. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Functional programming: an (Emacs) Lisp view 2/n. ~ Jens Jensen. #Lisp #FunctionalProgramming #Emacs
- A formally certified end-to-end implementation of Shor’s factorization algorithm. ~ Yuxiang Peng, Kesha Hietala, Runzhou Tao, Liyi Li, Robert Rand, Michael Hicks, Xiaodi Wu. #ITP #Coq #Quantum_computing
- Country-Fried Coq: Overly-formalized nonstandard arithmetic (with applications to Computer Science research). ~ Michael Coulombe. #ITP #Coq #Math
- Hall’s theorem for enumerable finite sets. ~ Fabián Fernando Serrano Suárez, Mauricio Ayala-Rincón & Thaynara Arielly de Lima. #ITP #IsabelleHOL #Math
- Using scans to accumulate. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Proof traces for SAT solvers. ~ Mate Soos (@SoosMate). #ATP #SATSolvers
- An interface for accessing environment variables. ~ Felix Springer. #Haskell #FunctionalProgramming
- Introduction to functional classes in CS1. ~ Marco T. Morazán. #Racket #FunctionalProgramming
- The AI illusion: State-of-the-art chatbots aren’t what they seem. ~ Gary Smith (@ProfGarySmith). #AI
- Sledgehammer: some history, some tips. ~ Lawrence C. Paulson (@LawrPaulson). #ITP #IsabelleHOL
- Verification of a Just-In-Time compiler. ~ Roméo La Spina. #ITP #Coq
- Functional Pearl: Dependent type inference via free higher-order unification. ~ Nikolai Kudasov. #Haskell #FunctionalProgramming #Logic #TypeTheory
- Functional programming learning path. ~ Lidia V. Gorodnyaya & Dmitry A. Kondratyev. #FunctionalProgramming
- Teaching interaction using state diagrams. ~ Padma Pasupathi et als. #Elm #FunctionalProgramming #Teaching
- Proof Pearl: Formalizing spreads and packings of the smallest projective space PG(3,2) using the Coq proof assistant. ~ Nicolas Magaud. #ITP #Coq #Math
- Modular pre-processing for automated reasoning in dependent type theory. ~ Valentin Blot, Denis Cousineau, Enzo Crance, Louise Dubois de Prisque, Chantal Keller, Assia Mahboubi & Pierre Vial. #ITP #Coq #SMT
- What’s that typeclass: Monoid. ~ Gints Dreimanis. #Haskell #FunctionalProgramming
- Teaching functional programmers logic and metatheory. ~ Frederik Krogsdal Jacobsen & ørgen Villadsen. #ITP #Coq #Logic #Haskell #FunctionalProgramming
- Implementing a formal system in Python. ~ Boro Sitnikovski (@BSitnikovski). #Python #Programming #Logic #Math
- The pro-PER meaning of “proper”. ~ Li-yao Xia (@lysxia). #ITP #Coq
- Sequential reasoning for optimizing compilers under weak memory concurrency. ~ M. Cho, S.H. Lee, D. Lee, C.K. Hur, O. Lahav. #ITP #Coq
- Reachability logic for low-level programs. ~ Nico Naus, Freek Verbeek, Marc Schoolderman, Binoy Ravindran. #ITP #IsabelleHOL
- SeCaV: A sequent calculus verifier in Isabelle/HOL. ~ Asta Halkjær From, Frederik Krogsdal Jacobsen & Jørgen Villadsen. #ITP #IsabelleHOL #Logic
- The effect semantics zoo. ~ Alexis King (@lexi_lambda). #Haskell #FunctionalProgramming
- GADTs, functoriality, parametricity: Pick two. ~ Patricia Johann, Enrico Ghiorzi & Daniel Jeffries. #Haskell #FunctionalProgramming
- Using Agda’s induction/recursion library. ~ Jeremy Siek (@jeremysiek). #ITP #Agda #FunctionalProgramming
- “Lisp is worth learning for the profound enlightenment experience you will have when you finally get it; that experience will make you a better programmer for the rest of your days, even if you never actually use Lisp itself a lot.” ~ Eric S. Raymond. #Quote #Programming #CompSci
- #Exercitium: Enunciado de “Elementos de una matriz con algún vecino menor”. #Haskell #ProgramaciónFuncional
- #Exercitium: Soluciones de “Familias de números con algún dígito en común”. #Haskell #ProgramaciónFuncional
- #PFH: Ejercicios con acciones IO (entrada/salida). #Haskell #ProgramaciónFuncional
- Integrating Zermelo-Fraenkel set theory with higher-order logic. ~ Lawrence C. Paulson (@LawrPaulson). #ITP #IsabelleHOL #SetTheory
- large-anon: Practical scalable anonymous records for Haskell. ~ Edsko de Vries (@EdskoDeVries). #Haskell #FunctionalProgramming
- How to calculate time complexity from scratch (Part 1: Everything a programmer needs to know about time complexity, from zero to hero). ~ Stephen Jose. #Algorithms
- A general framework for cofunctors. ~ Bryce Clarke (@8ryceClarke). #CategoryTheory
- Variadic functions in Hindley Milner. ~ Sandy Maguire. #Haskell #FunctionalProgramming
- Teaching optics through conspiracy theories. ~ Bartosz Milewski (@BartoszMilewski). #Haskell #FunctionalProgramming #CategoryTheory
- Galois theory. ~ Tom Leinster. #Math
- A tour of Prolog. ~ Markus Triska (@MarkusTriska). #Prolog #LogicProgramming
- The calculi of lambda conversion. ~ Alonzo Church (1941). #eBook #Logic #CompSci via @internetarchive
- Formalizing the beginnings of bayesian probability theory in the Lean theorem prover. ~ Rishikesh Hirendu Vaishnav. #MSc_Thesis #ITP #LeanProver #Math
- Number notation dans Coq (démonstration). ~ Pierre Roux. #ITP #Coq
- Un Coq apprend à un bébé Colibri à flotter. ~ Arthur Correnson & François Bobot. #ITP #Coq
- Understanding tail recursion. ~ Oitihjya Sen (@oteecodes). #Clojure #FunctionalProgramming
- A timeline for logic, λ-calculus, and programming language theory. ~ Dana S. Scott. #History #Logic #LambdaCalculus #FunctionalProgramming
- Combinatory logic. ~ H. B. Curry and R. Feys (1958). #eBook #Logic via @internetarchive
- The simple guide to programming paradigms. ~ Tamerlan Gudabayev. #Programming
- Practical aspects of monadic equational reasoning in Coq. ~ Ayumu Saito1, Reynald Affeldt. #ITP #Coq
- Formal model for inter-component communication and its security in Android. ~ Mohamed A. El-Zawawy, Parvez Faruki & Mauro Conti. #ITP #Coq
- Towards formal verification of HotStuff-based Byzantine Fault Tolerant consensus in Agda: Extended version. ~ Harold Carr, Christopher Jenkins, Mark Moir, Victor Cacciari Miraldo & Lisandra Silva. #ITP #Agda
- An ozone hole in Logic. ~ R.J. Lipton & K.W. Regan. #Logic #Programming #Scala #TypeTheory
- Pure print-style debugging in haskell. ~ Rebecca Skinner. #Haskell #FunctionalProgramming
- Monads. ~ Mark Seemann (@ploeh). #Haskell #FunctionalProgramming
- Names in Haskell compilers. ~ Vanessa McHale. #Haskell #FunctionalProgramming
- Haskell adventures: Functors. ~ Dmitry Tsepelev (@dmitrytsepelev). #Haskell #FunctionalProgramming
- Formalizing the ring of adèles of a global field. ~ María Inés de Frutos-Fernández. #ITP #LeanProver #Math
- Primality tests and prime certificate. ~ Laurent Théry. #ITP #Coq #Math
- Equivalence classes and quotienting. ~ Lawrence C. Paulson (@LawrPaulson). #Logic #Math #ITP
- [[https://youtu.be/YOI743XVC3g][[London Learning Lean] Fourier series]]. ~ Heather Macbeth. #ITP #LeanProver #Math
- A naive prover for first-order logic (in Isabelle/HOL). ~ Asta Halkjær From. #ITP #IsabelleHOL #Logic #Haskell #FunctionalProgramming
- Modeling PlusCal in Haskell using Cartesian products of NFAs. ~ Gabriella Gonzalez (@GabriellaG439). #Haskell #FunctionalProgramming #PlusCal
- Constructing the reals as Dedekind cuts of rationals. ~ Jacques D. Fleuriot, Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Machine-checked verification of cognitive agents. ~ Alexander Birch Jensen. #ITP #IsabelleHOL
- Certifying choreography compilation. ~ Lúıs Cruz-Filipe, Fabrizio Montesi, Marco Peressotti. #ITP #Coq
- Course: Introduction to proofs. ~ Sina Hazratpour. #ITP #LeanProver #Logic
- Formal semantics and formally verified validation for temporal planning. ~ Mohammad Abdulaziz, Lukas Koller. #ITP #IsabelleHOL
- Computer verification for historians of philosophy. ~ Landon Elkind. #ITP
- Proof-oriented domain-specific language design for high-assurance software. ~ Denis Merigoux (@DMerigoux). #PhD_Thesis #Programme_verification #Formal_methods
- Correctness proofs of distributed systems with Isabelle. ~ Martin Kleppmann. #ITP #IsabelleHOL
- Mechanical mathematicians (A new generation of automatic theorem provers eliminate bugs in software and mathematics). ~ Alexander Bentkamp et als. #ATP #ITP #Logic #Math
- Binary codes that do not preserve primitivity. ~ Štěpán Holub, Martin Raška, Štěpán Starosta. #ITP #IsabelleHOL
- View-based Owicki-Gries reasoning for persistent x86-TSO (Extended version). ~ Eleni Vafeiadi Bila, Brijesh Dongol, Ori Lahav, Azalea Raad, John Wickerson. #ITP #IsabelleHOL
- Reduction of register pushdown systems with freshness property to pushdown systems in LTL model checking. ~ Yoshiaki Takata, Ryoma Senda, Hiroyuki Seki. #ITP #Coq
- Making your own Monad. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Faking local instances with unsafeCoerce Dict. ~ Finn Schneider. #Haskell #FunctionalProgramming
- Haskell adventures: digging into the declarative approach. ~ Dmitry Tsepelev (@dmitrytsepelev). #Haskell #FunctionalProgramming
- Ackermann’s function is not primitive recursive. ~ Lawrence C. Paulson (@LawrPaulson). #ITP #IsabelleHOL
- New large-records release: now with 100% fewer quotes. ~ Edsko de Vries. #Haskell #FunctionalProgramming
- Leonardo, Verne y las inteligencias múltiples artificiales. ~ Francisco Fernández de Vega. #IA
- Type classes versus locales. ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL
- Review: Proof-Carrying Code. ~ Sandy Maguire. #Agda #FunctionalProgramming #ITP
- Review: Syntax-guided synthesis. ~ Sandy Maguire. #Agda #FunctionalProgramming #ITP
- Algebraic data types in Haskell. ~ Gints Dreimanis. #Haskell #FunctionalProgramming
- Teoría de los lenguajes de programación. (Entrevista a Uma Zalakain (@typer_uma) por Camilo Chacón Sartori (@camilo_chacon_s)). #ProgramaciónFuncional
- An Alternative Approach. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Explainable AI. ~ By Veda C. Storey, Roman Lukyanenko, Wolfgang Maass, Jeffrey Parsons. #AI #XAI
- Systems abstractions. ~ Peter J. Denning. #CompSci
- What we talk about when we talk about mathematics. ~ Jeremy Avigad. #Math
- The power of proof certificates. ~ Chantal Keller. #Automated_reasoning
- On how to improve cooperation between automated reasoning tools. ~ Pascal Fontaine. #Automated_reasoning
- Cool monad combinators. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- A proof from THE BOOK: The partial fraction expansion of the cotangent. ~ Manuel Eberl (@pruvisto). #ITP #IsabelleHOL #Math
- Formalising decentralised exchanges in Coq. ~ Eske Hoy Nielsen, Danil Annenkov, Bas Spitters. #ITP #Coq
- Types versus sets (and what about categories?). ~ Lawrence C Paulson (@LawrPaulson). #Logic #math #SetTheory #TypeTheory #LambdaCalculus
- Formally verifying industry cryptography. ~ Mike Dodds. #ITP #FormalMethods #Cryptography
- Forward reasoning in Lean 4. ~ Siddhartha Gadgil. #ITP #LeanProver
- Experiments with some ways of automating reasoning in Lean 4. ~ Siddhartha Gadgil. #ITP #LeanProver
- Lean mathzoo: a collection of mathematical formalizations in the Lean theorem prover. #ITP #LeanProver #Math #IMO
- A flexible proof format for SAT solver-elaborator communication. ~ Seulkee Baek, Mario Carneiro, Marijn J.H. Heule. #ATP #Satisfiability #SAT_solver
- Modular probabilistic models via algebraic effects. ~ Minh Nguyen, Roly Perera, Meng Wang, Nicolas Wu. #Haskell #FunctionalProgramming #ProbabilisticProgramming
- Replicate, reuse, repeat: Capturing non-linear communication via session types and graded modal types. ~ Daniel Marshall, Dominic Orchard. #Haskell #FunctionalProgramming
- Does your Monad even Lift? ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Infinite Wordle and the Mastermind numbers. ~ Joel David Hamkins. #Logic #Math
- A non-standard book list for software developers. ~ Mihai Olteanu. #Books #Math #CompSci
- Los números cuadrados (1). ~ Antonio Roldán (@Connumeros). #Matemáticas #Programación
- A remark on Lazy ST monad and MonadFix. ~ Marcin Szamotulski. #Haskell #FunctionalProgramming
- Review: Generic parallel functional programming. ~ Sandy Maguire. #Haskell #FunctionalProgramming
- Higher-Order logic and type theory. ~ John L. Bell. #Logic #TypeTheory
- Código Morse en Prolog. ~ Adrián Arroyo Calle (@aarroyoca). #Prolog #ProgramaciónLógica
- Shorter run functions. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Beginning Haskell type system, part 1 (The basics of the Haskell type system). ~ C. L. Beard. #Haskell #FunctionalProgramming
- Haskell for extreme idea brainstorming. ~ Tom Wells. #Haskell #FunctionalProgramming
- Learn Haskell for Plutus (Cardano ADA Contracts). ~ Jason Barhorst. #Haskell #FunctionalProgramming
- 15 Resources to help you learn Haskell in 2022. ~ Gints Dreimanis. #Haskell #FunctionalProgramming
- The quaterions—and type classes. ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Synthetic Kolmogorov complexity in Coq. ~ Yannick Forster,Fabian Kunze, Nils Lauermann. #ITP #Coq
- Information flow aware languages (Kuifje emerges from the Shadows). ~ Jack Drury. #ITP #IsabelleHOL
- Verification of Bitcoin’s smart contracts in Agda using weakest preconditions for access control. ~ Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, Anton Setzer. #ITP #Agda #Blockchain #Cryptocurrency
- This month in mathlib (Feb 2022). #ITP #LeanProver #Mathlib #Math
- Running with monads. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Reading RSS with elfeed. #Emacs
- Residuated transition systems (in Isabelle/HOL). ~ Eugene W. Stark. #ITP #IsabelleHOL
- The independence of the continuum hypothesis in Isabelle/ZF. ~ Emmanuel Gunther, Miguel Pagano, Pedro Sánchez Terraf, Matías Steinberg. #ITP #IsabelleZF #Math
- OpenAI tackles Math: Formal mathematics statement curriculum learning. ~ Yannic Kilcher. #ITP #LeanProver #Math #IMO #AI
- How to use monads without understanding them. ~ Lucian Ursu. #Haskell #FunctionalProgramming
- Review: Lightweight semiformal time complexity analysis for purely functional data structures. ~ Sandy Maguire. #Haskell #FunctionalProgramming
- Notes on optimizing Clojure code: Arrays. ~ Gary Verhaegen (@gaverhae). #Clojure #FunctionalProgramming
- Fantasmas en Matemáticas. ~ Juan Arias de Reyna. #Matemáticas
- Verified approximation algorithms. ~ Robin Eßmann, Tobias Nipkow, Simon Robillard, Ujkan Sulejmani. #ITP #IsabelleHOL
- Theory exploration for programs and proofs. ~ Sólrún Halla Einarsdóttir. #ITP #IsabelleHOL #Haskell #FunctionalProgramming
- Reliably reproducing machine-checked proofs with the Coq platform. ~ Karl Palmskog, Enrico Tassi, Théo Zimmermann. #ITP #Coq
- Automatic test-case reduction in proof assistants: A case study in Coq. ~ Jason Gross, Théo Zimmermann, Miraya Poddar-Agrawal, Adam Chlipala. #ITP #Coq
- Property-based testing for OCaml through Coq. ~ Paaras Bhandari, Leonidas Lampropoulos. #ITP #Coq #OCaml #FunctionalProgramming
- [[https://youtu.be/O15dbvEDApg][[POPL’22] Panel 1: Proof assistants for PL and math]]. #ITP #CompSci #Math
- Conceptual mathematics via literate programming. ~ Ian Benson, Jim Darby, Neil MacDonald, Jesse Sigal. #Math #Python #Haskell
- Formally verified asymptotic consensus in robust networks. ~ Mohit Tekriwal, Avi Tachna-Fram, Jean-Baptiste Jeannin, Manos Kapritsos, Dimitra Panagou. #ITP #Coq
- VLSM: Validating labelled state transition and message production systems. ~ Vlad Zamfir, Mihai Calancea, Denisa Diaconescu, Brandon Moore, Karl Palmskog, Traian Florin Şerbănuţă, Michael Stay. #ITP #Coq
- Transitive models of fragments of ZFC (in Isabelle/HOL). ~ Emmanuel Gunther, Miguel Pagano, Pedro Sánchez Terraf, Matías Steinberg. #ITP #IsabelleHOL #Math
- Optics vs lenses, operationally. ~ Philip Wadler. #CategoryTheory #FunctionalProgramming
- Characteristics of de Bruijn’s early proof checker Automath. ~ Herman Geuvers, Rob Nederpelt. #ITP #Automath
- Using Either as a Monad. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Axiomatic type classes: some history, some examples. ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL #FunctionalProgramming
- Applicatives should usually implement Semigroup and Monoid. ~ Gabriella Gonzalez (@GabriellaG439). #Haskell #FunctionalProgramming
- L’avènement de la synthèse de programme. ~ Nathanaël Fijalkow. #Programming
- The lambda calculus. ~ Jesse Alama, Johannes Korbmacher. #LambdaCalculus
- Functional Prolog: Map, filter and reduce. ~ Paul Brown. #Prolog #LogicProgramming #FunctionalProgramming H/T: @ThePrologClause
- Introducción a la programación en Julia. ~ Ben Lauwens y Allen Downey. Traducido por Pamela Bustamante(@pambusf). #JuliaLang #Programación
- Optimización matemática y los retos de la inteligencia artificial (Pódcast) ~ Pamela Bustamante (@pambusf) y Camilo Chacón Sartori (@camilo_chacon_s) en “Había una vez un algoritmo…” #JuliaLang #Programación
- A formalisation of algorithms for sorting network. ~ Laurent Théry. #ITP #Coq
- Treating strings like lists. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Teaching old Emacsen new tricks. ~ Philip Kaludercic. #Emacs #Lisp
- What is a monad morphism (in Haskell)? ~ Gabriella Gonzalez (@GabriellaG439). #Haskell #FunctionalProgramming
- Review: A very elementary introduction to sheaves. ~ Sandy Maguire. #ITP #Agda #FunctionalProgramming #Math
- Failing in Haskell. ~ Jappie Klooster (@jappieklooster). #Haskell #FunctionalProgramming
- Formalizing and proving knights and knaves puzzles in three valued logic in Coq. ~ Kimberley Frings. #ITP #Coq
- Certified verification of relational properties. ~ Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto, Pascale Le Gall. #ITP #Coq
- Division by two, in homotopy type theory. ~ Samuel Mimram, Émile Oleon. #ITP #Agda #HoTT
- United monoids: Finding simplicial sets and labelled algebraic graphs in trees. ~ Andrey Mokhov. #Haskell #FunctionalProgramming
- A foundational proof framework for cryptography. ~ Adam Petcher. #PhDThesis #ITP #Coq
- Conditional coding. ~ Phil de Joux (@philderbeast). #Haskell #FunctionalProgramming
- Haskell database implementation, Part 2: Domain specific language and transactionality. ~ Dan Fithian. #Haskell #FunctionalProgramming
- Learning Haskell during AOC. ~ Daniel del Castillo de la Rosa. #Haskell #FunctionalProgramming
- Fusion powered strings! ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Programming Arduinos with Haskell and NASA’s Copilot. ~ Joey Hess. #Haskell #FunctionalProgramming
- Diversity-driven automated formal verification. ~ Emily First, Yurity Brun. #ITP #Coq #MachineLearning
- The Haskell programmer’s guide to the IO Monad (Don’t panic). ~ Stefan Klinger (2005). #Haskell #FunctionalProgramming #CategoryTheory
- The hereditarily finite sets. ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Mechanization of LAGC semantics in Isabelle. ~ Niklas Heidler. #ITP #IsabelleHOL
- Universal hash families (in Isabelle/HOL). ~ Emin Karayel. #ITP #IsabelleHOL
- Power quandles. ~ Torstein Vik. #ITP #LeanProver #Math
- A constructive and synthetic theory of reducibility: Myhill’s isomorphism theorem and Post’s problem for many-one and truth-table reducibility in Coq. ~ Y. Forster, F. Jahn, G. Smolka. #ITP #Coq
- Proof theory of Riesz spaces and modal Riesz spaces. ~ Christophe Lucas, Matteo Mio. #ITP #Coq #Logic
- Implementation of the hypersequent calculii HR and HMR introduced in the article “Proof theory of Riesz spaces and modal Riesz spaces”. ~ Christophe Lucas. #ITP #Coq #Logic
- Structure and interpretation of computer programs notes. ~ Aditya Nebhrajani. #Racket #Programming #Emacs #OrgMode
- First-order query evaluation (in Isabelle/HOL). ~ Martin Raszyk. #ITP #IsabelleHOL
- Wetzel’s Problem and the Continuum Hypothesis (in Isabelle/HOL). ~ Lawrence C Paulson. #ITP #IsabelleHOL #Math
- Repositorio del minicurso “Demostración de teoremas interactiva asistida usando Lean”. ~ Andrés Goens. #ITP #LeanProver
- REST: Integrating term rewriting with program verification. ~ Zachary Grannan, Niki Vazou, Eva Darulova, Alexander J. Summers. #Haskell #LiquidHaskell #FunctionalProgramming
- Formalization of a stochastic approximation theorem. ~ Koundinya Vajjha, Barry Trager, Avraham Shinnar, Vasily Pestun. #ITP #Coq
- Formal verification of iterative convergence of numerical algorithms. ~ Mohit Tekriwal, Joshua Miller, Jean-Baptiste Jeannin. #ITP #Coq
- A simplified variant of Gödel’s ontological argument. ~ Christoph Benzmüller. #ITP #IsabelleHOL
- The directed plump ordering. ~ Daniel Gratzer, Michael Shulman, Jonathan Sterling. #ITP #Agda
- The unreasonable effectiveness of Haskell (Reliability, resource management, and DSLs). ~ Rebecca Skinner (@cercerilla). #Haskell #FunctionalProgramming
- Logtalk, Prolog orientado a objetos. ~ Adrián Arroyo Calle (@aarroyoca). #Prolog #Logtalk #LogicProgramming
- OCaml from the very beginning. ~ John Whitington (@johnwhitington). #eBook #OCaml #FunctionalProgramming
- Natural language proof checking in introduction to proof classes - First experiences with Diproche. ~ Merlin Carl, Hinrich Lorenzen, Michael Schmitz. #ITP #Diproche #Math
- Automatic ring solving. ~ Sandy Maguire. #ITP #Agda #Math
- Reto Python. ~ @atareao #Python #Programación
- Learning and programming challenges of Rust: A mixed-methods study. ~ Shuofei Zhu et als. #RustLang
- Calibrating computational complexity via definability: The work of Julia F. Knight. ~ Karen Lange. #Math #CompSci H/T: @AndresECaicedo1
- A classical proof: exponentials are irrational. ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Lebesgue induction and Tonelli’s theorem in Coq. ~ Sylvie Boldo, François Clément, Vincent Martin, Micaela Mayero, Houda Mouhcine. #ITP #Coq #Math
- Software can literally be perfect (How Formal Verification and Magmide could make provably correct code tractable for practicing software engineers). ~ Blaine Hansen. #ITP #Coq #Magmide
- Working with a computer proof assistant. ~ Andrea Mair, Martin Fuchs. #ITP #LeanProver
- Dynamic programming insights from programming contests. ~ Samantha Valentine Lapensée-Rankine. #MSc_Thesis #Programming
- Multi-head monitoring of metric dynamic logic (in Isabelle/HOL). ~ Martin Raszyk. #ITP #IsabelleHOL
- Formalization of a stochastic approximation theorem. ~ Koundinya Vajjha, Barry Trager, Avraham Shinnar, Vasily Pestun. #ITP #Coq #Math
- Analyses are arrows. ~ Luc Tielen (@luctielen). #Haskell #FunctionalProgramming
- How to design a chat bot. #Haskell #FunctionalProgramming
- Monads in Computer Science. ~ Christina Kohl, Christina Schwaiger. #Haskell #FunctionalProgramming #CategoryTheory
- Formalized functional analysis with semilinear maps. ~ Frédéric Dupuis, Robert Y. Lewis, Heather Macbeth. #ITP #LeanProver #Math
- Explosive proofs of mathematical truths. ~ Scott Viteri, Simon DeDeo. #ITP #Coq #Math H/T: @LogicPractice
- Simply Scheme: Introducing Computer Science. ~ Brian Harvey, Matthew Wright (1999) #eBook #Scheme #FunctionalProgramming #CompSci
- Course: Formal proof and verification. ~ Robert Y. Lewis. #ITP #LeanProver
- L²-Betti numbers and computability of reals. ~ Clara Loeh, Matthias Uschold. #ITP #LeanProver #Math
- Composable web forms with Applicative. ~ Marco Z (@ocramz_yo). #Haskell #FunctionalProgramming
- The mathematical origins of modern computing. ~ Mark Priestley. #Math #CompSci #History
- Lo que las máquinas no nos cuentan. ~ Senén Barro Ameneiro. #AI #XAI #MachineLearning H/T: @manuel_de_leon
- Machine learning o cuando los algoritmos aprenden de los datos (Pódcast). ~ Camilo Chacón Sartori (@camilo_chacon_s). #AI #MachineLearning #Programming
- Trasteando con yasnippets. ~ Notxor. #Emacs
- Automated reasoning’s scientific frontiers. ~ Byron Cook. #Automated_reasoning H/T: @jborrego
- Fixed points theorems for non-transitive relations. ~ Jérémy Dubut, Akihisa Yamada. #ITP #IsabelleHOL
- Formalising the GAGA theorem. ~ Jujian Zhang. #ITP #LeanProver #Math
- Deriving isomorphically. ~ Hans Hoeglund. #Haskell #FunctionalProgramming
- Getting lazy and pure in code contests by using Haskell. ~ Chen Huo. #Haskell #FunctionalProgramming
- A posthumous contribution by Larry Wos: Excerpts from an unpublished column. ~ Sophie Tourret, Christoph Weidenbach. #Automated_reasoning #History
- Formally verified verifiable group generation. ~ Mukesh Tiwari (@mukesh_tiwari). #ITP #Coq #Math
- First-order theory of rewriting (in Isabelle/HOL). ~ Alexander Lochmann, Bertram Felgenhauer. #ITP #IsabelleHOL #Logic
- Review: Codata in action. ~ Sandy Maguire. #Haskell #FunctionalProgramming
- IHP: A Haskell framework for type-safe Web applications. ~ Marc Scholten and Gints Dreimanis. #Haskell #FunctionalProgramming
- A nicer if-then-else syntax in Prolog. ~ Gilbert. #Prolog #LogicProgramming H/T: @ThePrologClause
- Números admirables. ~ Antonio Roldán (@Connumeros). #Matemáticas #Programación #Excel
- An executable formal model of the VHDL in Isabelle/HOL. ~ Wilayat Khan, Zhe Hou, David Sanan, Jamel Nebhen, Yang Liu, Alwen Tiu. #ITP #IsabelleHOL
- Reflexive tactics for algebra, revisited. ~ Kazuhiko Sakaguchi. #ITP #Coq #Math
- Four geometry problems to introduce automated deduction in secondary schools. ~ Pedro Quaresma. #GATP #Math
- Teaching intuitionistic and classical propositional logic using Isabelle. ~ Jørgen Villadsen, Asta Halkjær From, Patrick Blackburn. #Logic #Teaching #ITP #IsabellePure
- Fun with Ackermann’s function. ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Ackermann’s function in iterative form: A proof assistant experiment. ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Automated instantiation of control flow tracing exercises. ~ Clemens Eisenhofer, Martin Riener. #Programming #Teaching #SMT #Z3
- Software for Math Research. ~ @AMathRes #Math #CompSci
- Every Distributive is Representable. ~ Daniel Mlot (@duplode). #Haskell #FunctionalProgramming
- Do proofs yield objective truth, or are they culturally robust at best? ~ Andrew Granville. #Math #ITP #LeanProver
- Towards a formalization of nominal sets in Coq. ~ Fabrício S. Paranhos, Daniel Ventura. #ITP #Coq
- In Mathematics, mistakes aren’t what they used to be (Computers can’t invent, but they’re changing the field anyway). ~ Siobhan Roberts. #Math #ITP
- Use and abuse of instance parameters in the Lean mathematical library. ~ Anne Baanen. #ITP #LeanProver #MathLib
- Formally verified Mathematics. ~ Jeremy Avigad, John Harrison (2014). #ITP #Math
- History of interactive theorem proving. ~ John Harrison, Josef Urban, Freek Wiedijk. #ITP #History
- How to prove it. ~ Jeremy Siek. #Logic
- A mathematician’s apology. ~ G.H. Hardy (1940). #Math via @internetarchive
- Enumeration of equivalence relations (in Isabelle/HOL). ~ Emin Karayel. #ITP #IsabelleHOL #Math
- Duality of linear programming (in Isabelle/HOL). ~ René Thiemann. #ITP #IsabelleHOL #Math
- This month in mathlib (Jan 2022). #ITP #LeanProver #MathLib #Math
- Beautiful formalizations in Isabelle/Naproche. ~ Adrian De Lonr, Peter Koepker, Anton Lorenzen, Adrian Marti, Marcel Schütz, Erik Sturzenhecker. #ITP #IsabelleNaproche #Math
- Evaluating SKI combinators as native Haskell functions. ~ Thomas Mahler. #Haskell #FunctionalProgramming
- Review: Sorting with bialgebras and distributive laws. ~ Sandy Maguire. #Haskell #FunctionalProgramming
- Functional Pearl: Super-naturals. ~ Ralf Hinze, Colin Runciman. #Haskell #FunctionalProgramming
- 1983–1993: The wonder years of sequential Prolog implementation. ~ Peter Van Roy (1993). #Prolog #LogicProgramming via @notjfmc
- Craftsman or scientist? ~ Edsger W. Dijkstra (1975). #CompSci #Teaching #Programming
- How to solve it. ~ George Pólya (1945). #Problem_solving
- How to solve it: a new aspect of mathematical method. ~ George Pólya (1945). #Polya
- El método de Pólya para resolver problemas. #Polya
- How to program it. ~ Simon Thompson. #Polya #Programming
- Algorithm = Logic + Control. ~ Rober Kowalski (1979). #LogicProgramming #Prolog via @notjfmc
- Solving the snake cube puzzle in Haskell. ~ Mark P. Jones (2013). #Haskell #FunctionalProgramming
- Mathematicians and computing scientists: The cultural gap. ~ Edsger W.Dijkstra (1987). #CompSci #Math
- Constructive mathematics and computer programming. ~ Per Martin-Löf (1984). #CompSci #Math
- A basis for a mathematical theory of computation. ~ John McCarthy (1963). #CompSci #Math
- On the teaching of programming, i.e. on the teaching of thinking. ~ Edsger W.Dijkstra (1975). #CompSci #Programming
- Synthetic integral cohomology in Cubical Agda. ~ Guillaume Brunerie, Axel Ljungström, Anders Mörtberg. #ITP #Agda #Math
- Realising intensional S4 and GL modalities. ~ Liang-Ting Chen, Hsiang-Shang Ko. #ITP #Agda
- [[https://youtu.be/QL5oGMxpmJI][[CPP’22] The seL4 verification: the art and craft of proof and the reality of commercial support]]. ~ June Andronick. #FormalVerification #ITP #IsabelleHOL
- [[https://youtu.be/soinDToPFdY][[CPP’22] Structural embeddings revisited]]. ~ César Muñoz. #ITP #PVS
- [[https://youtu.be/StQ40osfQTo][[CPP’22] Coq’s vibrant ecosystem for verification engineering]]. ~ Andrew Appel. #ITP #Coq
- [[https://youtu.be/MXyRZgWFI3M][[CPP’22] Formalising Lie algebras]]. ~ Oliver Nash. #ITP #LeanProver #Math
- [[https://youtu.be/87jLyEj_xXI][[CPP’22] Undecidability, incompleteness, and completeness of second-order logic in Coq]]. ~ Mark Koch, Dominik Kirst. #ITP #Coq #Logic #Math
- [[https://youtu.be/Q1vGBUyzGF8][[CPP’22] Applying formal verification to microkernel IPC at Meta]]. ~ Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, Francesco Zappa Nardelli. #FormalVerification #ITP #Coq
- [[https://youtu.be/UH_BNKk7cT8][[CPP’22] A machine-checked direct proof of the Steiner-Lehmus theorem]]. ~ Ariel Kellison. #ITP #Nuprl #Math
- Formalization of the computational theory of a Turing complete functional language model. ~ Thiago Mendonça Ferreira Ramos, Ariane Alves Almeida, Mauricio Ayala-Rincon. #ITP #PVS
- A bi-directional extensible interface between Lean and Mathematica. ~ Robert Y. Lewis, Minchao Wu. #ITP #LeanProver #CAS #Mathematica
- Número 1 de la revista QED. ~ Miguel Ángel Morales (@gaussianos). #Matemáticas
- Formal mathematics statement curriculum learning. ~ Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, Ilya Sutskever. #AI #MachineLearning #ITP #LeanProver #Math
- Young’s inequality for increasing functions (in Isabelle/HOL). ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Quasi-Borel spaces (in Isabelle/HOL). ~ Michikazu Hirata, Yasuhiko Minamide, Tetsuya Sato. #IsabelleHOL
- Formalising mathematics in set theory. ~ Lawrence C Paulson (@LawrPaulson). #Logic #Math #SetTheory #ITP #Mizar #IsabelleHOL
- A sequent calculus prover for first-order logic with functions (in Isabelle/HOL). ~ Asta Halkjær From, Frederik Krogsdal Jacobsen. #ITP #IsabelleHOL #Logic
- Extracting efficient exact real number computation from proofs in constructive type theory. ~ Michal Konečný, Sewon Park, Holger Thies. #ITP #Coq #Math #Haskell #FunctionalProgramming
- Formal mathematics statement curriculum learning. ~ Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, Ilya Sutskever. #AI #MachineLearning #ITP #LeanProver #Math
- Showcase: deriving-trans. ~ Felix Springer. #Haskell #FunctionalProgramming
- Software development languages: Haskell. ~ Colin Woodbury. #Haskell #FunctionalProgramming
- A short introduction to the art of programming. ~ Edsger W.Dijkstra (1971). #CompSci #Programming
- Modular forms, Eisenstein series and modularity conjecture. ~ Christopher Birkbeck. #ITP #LeanProver #Math
- IDP-Z3: a reasoning engine for FO(.) ~ Pierre Carbonnelle, Simon Vandevelde, Joost Vennekens, Marc Denecker. #AI #KRR #SMT #Z3
- QuickCheck, Hedgehog, Validity. ~ Tom Sydney Kerckhove (@kerckhove_ts). #Haskell #FunctionalProgramming via @FPComplete
- Validity and validity-based testing. ~ Tom Sydney Kerckhove (@kerckhove_ts).y#readme #Haskell #FunctionalProgramming
- Running Lisp in production. ~ Vsevolod Dyomkin. #CommonLisp #Programming #NLP #ML
- Interpolation polynomials (in HOL-Algebra). ~ Emin Karayel. #ITP #IsabelleHOL #Math
- Introduction to free monads. ~ Nikolay Yakimov. #Haskell #FunctionalProgramming
- Delimited control and breadth-first, depth-first, and iterative deepening search.l#reify-search #Haskell #FunctionalProgramming
- Underlining the bugs. ~ Sandy Maguire. #Haskell #Agda #FunctionalProgramming
- Curso: Álgebra básica. #Matemáticas
- Combining find and grep in Emacs. #Emacs
- Irrational numbers from THE BOOK (in Isabelle/HOL). ~ Lawrence C Paulson (@LawrPaulson). #ITP #IsabelleHOL #Math
- Haskell, the language most likely to change the way you think about programming. ~ Aaron Contorer (@Contorer). #Haskell #FunctionalProgramming
- Why I am learning Haskell (The Language for the Cardano Blockchain). ~ Chester Beard (@CBeardWrites). #Haskell #FunctionalProgramming
- Notes on optimizing Clojure code: Example. ~ Gary Verhaegen (@gaverhae). #Clojure #FunctionalProgramming
- Programming as a discipline of mathematical nature. ~ Edsger W.Dijkstra (1971). #CompSci #Programming #Math
- The beautiful world of number theory — The Queen of Mathematics. ~ Kasper Müller. #Math
- [[https://youtu.be/YqaZchFrH5k][[London Learning Lean] Group cohomology]]. ~ Amelia Livingston. #ITP #LeanProver #Math
- Formally verified superblock scheduling. ~ Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, Nicolas Nardino. #ITP #Coq via @johnregehr
- [[https://slides.com/haskellbeginners2022/lecture-4][[Haskell Beginners 2022] Lecture 4: Monads and IO]]. ~ Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- The Common Lisp Cookbook (Diving into the programmable programming language). ~ Vindarel. #eBook #CommonLisp #Programming
- Comparative verification of the Digital Library of Mathematical Functions and computer algebra systems. ~ André Greiner-Petter, Howard S. Cohl, Abdou Youssef, Moritz Schubotz, Avi Trost, Rajen Dey, Akiko Aizawa, Bela Gipp. #Math #CAS #Maple #Mathematica
- Custom Wordle: el creador definitivo de wordles con la palabra que quieras, de cualquier longitud e idioma. ~ @Alvy. #Wordle
- Verified tensor-program optimization via high-level scheduling rewrites. ~ Amanda Liu, Gilbert Bernstein, Adam Chlipala, Jonathan Ragan-Kelley. #ITP #Coq via @johnregehr
- 50 Years of Prolog and beyond. ~ Philipp Körner, Michael Leuschel, João Barbosa, Vítor Santos Costa, Verónica Dahl, Manuel V. Hermenegildo, Jose F. Morales, Jan Wielemaker, Daniel Diaz, Salvador Abreu, Giovanni Ciatto. #Prolog #LogicProgramming
- Theoretical Computer Science for the working category theorist. ~ Noson S. Yanofsky. #CategoryTheory #CompSci #Math
- Ontology and the foundations of mathematics (Talking past each other). ~ Penelope Rush. #Math #Philosophy
- L-Systems (in Lisp). ~ Violet White. #Programming #Math
- What do Computer Science teachers need for professional development? ~ Alfred Thompson (@alfredtwo). #CompSci #Education
- The trusted computing base of the CompCert verified compiler. ~ David Monniaux, Sylvain Boulmé. #ITP #Coq
- Proof assistants: History, ideas and future. ~ H Geuvers #ITP
- Is Zermelo-Fraenkel set theory the foundation of mathematics? ~ Lawrence C. Paulson. #ITP #IsabelleHOL #Logic #Math #SetTheory
- A case study on correctness and safety testing of stateful systems. ~ Victor Miraldo. #Haskell #FunctionalProgramming
- The computation of appending lists at the type and value level. ~ Boro Sitnikovski (@BSitnikovski). #Haskell #Idris #FunctionalProgramming
- Researchers build AI that builds AI. ~ Anil Ananthaswam. #AI #DeepLearning
- Safe AI: How is this possible? ~ Harald Rueß, Simon Burton. #AI
- Non-equivalent floating point numbers. ~ John D. Cook (@JohnDCook). #CompSci #Programming #Math
- Certifying algorithms and relevant properties of Reversible Primitive Permutations with Lean. ~ Giacomo Maletto, Luca Roversi. #ITP #LeanProver
- Varieties of mathematical understanding. ~ Jeremy Avigad. #ITP #Math
- Median method (in Isabelle/HOL). ~ Emin Karayel. #ITP #IsabelleHOL #Math
- Hommage à Alain Colmerauer (Livre d’or). #LogicProgramming #Prolog #History
- Describing a dragon curve with Prolog. ~ Markus Triska (@MarkusTriska). #Prolog #LogicProgramming
- Philosophy of Mathematics. ~ Leon Horsten. #Math #Philosophy via @peoppenheimer
- Set theory. ~ John P. Burgess. #Set_theory #Logic #Math
- A discipline of programming. ~ Edsger W. Dijkstra (1976). #CompSci via @internetarchive
- Great papers in Computer Science. ~ Eliza Brock Marcum (@elizabrock). #CompSci #History
- Giants of computing: A compendium of select, pivotal pioneers. ~ Gerard O’Regan. #CompSci #History
- Haskell beginners 2022: Lecture 3 about ad-hoc polymorphism, typeclasses, deriving, semigroup, monoid, higher-kinded types, functor, foldable. ~ Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- Formalising Mathematics: Section 3 : An introduction to group theory. ~ Kevin Buzzard (@XenaProject) #ITP #LeanProver #Logic #Math
- [[https://youtu.be/vV4jP8li9HY][[Formalising math 2022] Section 03: groups, introduction to classes and structures]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/myPZ7D7xyvs][[Formalising math 2022] Section 03: groups, solns to sheet 1 (basic definitions and theorems)]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/Qh5giF6DlZ8][[Formalising math 2022] Section 03: Playing with variants of the axioms]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/N5jl5lTVPGQ][[Formalising math 2022] Section 03: groups, boilerplate for subgroups]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/VcXsl9hqR7c][[Formalising math 2022] Section 03: groups, solns to sheet 3 (subgroups) ~ Kevin Buzzard (@XenaProject)]]. #ITP #LeanProver #Logic #Math
- Abstractions, their algorithms, and their compilers. ~ Alfred Aho, Jeffrey Ullman. #CompSci
- Becoming universal (A new history of modern computing). ~ Thomas Haigh. #CompSci #History
- A new history of modern computing.1#v=onepage&q&f=false ~ Thomas Haigh, Paul E. Ceruzzi #CompSci #History
- The lives of hidden figures matter in computer science education. ~ Tiffani L. Williams. #CompSci #Education #History
- Computers were originally humans. ~ Herbert Bruderer. #CompSci #History
- Parallel logic programming: A sequel. ~ Agostino Dovier, Andrea Formisano, Gopal Gupta, Manuel V. Hermenegildo, Enrico Pontelli, Ricardo Rocha. #LogicProgramming
- Folding the unfoldable. ~ Oleg Grenrus (@phadej). #Haskell #FunctionalProgramming
- Lambda the ultimate SSA: Optimizing functional programs in SSA. ~ Siddharth Bhat, Tobias Grosser. #LeanProver #FunctionalProgramming #ITP
- An extensible equality checking algorithm for dependent type theories. ~ Anja Petković Komel, Andrej Bauer. #TypeTheory #ITP #Andromeda
- Formal modeling and verification of the sequential kernel of an embedded operating system. ~ Zhang Haitao, Chen Lirong, Luo Lei. #ITP #IsabelleHOL
- Mathematics and mathematics education in the 21st century. ~ Alexandre Borovik, Zoltan Kocsis, Vladimir Kondratiev. #Math #Education #CompSci #ITP
- The hole story: Type-driven synthesis and repair. ~ Matthías Páll Gissurarson. #BSc_Thesis #Haskell #FunctionalProgramming
- Fregel: a functional domain-specific language for vertex-centric large-scale graph processing. ~ Hideya Iwasaki, Kento Emoto, Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu. #Haskell #FunctionalProgramming
- Ingeniería y programación por Antonio Cabrera y Camilo Chacón Sartori (@camilo_chacon_s) en “Había una vez un algoritmo…” #Podcast #Programación
- Actuarial mathematics (in Isabelle/HOL). ~ Yosuke Ito. #ITP #IsabelleHOL #Math
- Brian Kernighan: “Controlling complexity is the essence of computer programming.” #CompSci #Programming
- The C programming language. ~ Brian W. Kernighan and Dennis Ritchie (1972). #CompSci #Programming via @internetarchive
- Computer Science courses with video lectures. #CompSci
- The algebra of logic tradition. ~ Burris, Stanley and Javier Legris. #Logic #Math via @dailySEP
- Monoids are composable list summarizers. ~ Chris Smith (@cdsmithus). #Haskell #FunctionalProgramming #Math
- Laboratorio de Inteligencia Artificial inmersiva de la Universidad de Sevilla. #IA #Aprendizaje_automático
- Immersive Artificial Intelligence Lab. #AI #MachineLearning
- Lisp in production: Interview with John Mercouris and Pierre Neidhardt the leads of the Atlas, the guys behind Nyxt web browser. #CommonLisp #Programming #Nyxt
- LLisp: Lisp in Lisp. ~ Stepan Parunashvili (@stopachka). #Clojure #Programming #Lisp
- Introduction to proof theory I: Sequent calculus. ~ Tim Lyon. #Logic #Math #Proof_theory
- An introduction to proof theory II: Invertibility, cut-elimination, and proof-search. ~ Tim Lyon. #Logic #Math #Proof_theory
- [[https://youtu.be/vPGNkByvPIY][[Formalising math 2022] Section 02: the reals, solutions to sheet 4 (cheating with library_search)]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/Pspnhby_pfo][[Formalising math 2022] Section 02: the reals, solutions to sheet 5 (limit of sum is sum of limits)]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/ze_GaITsu2Q][[Formalising math 2022] Section 02: the reals, solutions to sheet 6 (limit of prod is prod of limits)]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- Course: Foundations of knowledge representation. ~ Hannes Straß. #KRR #Logic
- Computational logic (Working material). ~ Steffen Hölldobler. #Logic #AI
- Epigrams on programming. ~ Alan J. Perlis (1982). #CompSci #Programming
- List of pioneers in computer science. #CompSci #History
- Chronological listing of A. M. Turing award winners. #CompSci #History
- Parametrized CDCL verified in Coq. ~ Ende Jin. #ITP #Coq
- The emperor’s old clothes. ~ C.A.R. Hoare (1981). #CompSci
- paratodo x: Una introducción a la lógica formal. ~ P.D. Magnus. #Lógica via @RrrichardZach
- The Haskell school of music (from signals to symphonies). ~ Paul Hudak. #Haskell #FunctionalProgramming
- Introducción a la Inteligencia Artificial. ~ José A. Alonso y Francisco J. Martín (1997). #IA #Historia
- Programación basada en reglas con CLIPS. ~ José A. Alonso, José Luis Ruiz y Francisco J. Martín (2002). #CLIPS
- Programming with abstract data types. ~ Barbara Liskov, Stephen Zilles (1974). #CompSci #Programming
- Algebra, topology, differential calculus, and optimization theory for computer science and machine learning. ~ Jean Gallier and Jocelyn Quaintance. #eBook #Math #MachineLearning via @CompSciFact
- Lambda calculi with types. ~ Henk Barendregt. #Logic #CompSci via @CompSciFact
- A mechanized proof of the max-flow min-cut theorem for countable networks with applications to probability theory. ~ Andreas Lochbihler. #ITP #IsabelleHOL
- Prolog programming for artificial intelligence. ~ Ivan Bratko (1990). #Prolog #LogicProgramming #AI via @internetarchive
- Simply logical (Intelligent reasoning by example). ~ Peter Flach. #Logic #Prolog #LogicProgramming #AI
- Proof by picture! #Math
- On formally undecidable propositions of “Principia Mathematica” and related systems I. ~ Kurt Gödel (1931). #Logic #Math
- Programming language and compiler benchmarks. #Programming
- Programming language and compiler benchmarks (Repo). #Programming
- Automated theorem proving in the classroom. ~ Wolfgang Windsteiger. #ITP #ATP #Logic #Math
- A resolution switching responsive images template with Haskell and IHP. ~ Fritz Feger (@fritzfeger). #Haskell #FunctionalProgramming
- How to teach mathematical disciplines for IT specialties. ~ Andrei Sukhov. #Math #CompSci
- Why Liquid Haskell matters. ~ Facundo Domínguez. #Haskell #LiquidHaskell
- Abstracting over branch and bound. #Haskell #FunctionalProgramming
- Mathematical problems. ~ David Hilbert (1900). #Math #CompSci
- Mechanizing matching logic in Coq. ~ Péter Bereczky, Xiaohong Chen, Dániel Horpácsi, Tamás Bálint Mizsei, Lucas Peña. #ITP #Coq #Logic
- Interactive teaching of programming language theory with a proof assistant. ~ Péter Bereczky, István Donkó, Dániel Horpácsi, Ambrus Kaposi, Dávid János Németh. #ITP #Coq
- The complexity of theorem-proving procedures. ~ Stephen A. Cook (1971). #CompSci #Logic #Math
- [[https://youtu.be/mbjeniWFqcM ][[Formalising math 2022] Section 02: the reals, solutions to sheet 1 (“norm_num”)]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/fuNF7lVouWs][[Formalising math 2022] Section 02: the reals, solutions to sheet 2 (“ring”)]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/jCQ1_zXo5GI][[Formalising math 2022] Section 02: the reals, solutions to sheet 3 (limits of sequences)]]. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- [[https://youtu.be/rf-lie7U04Q][[Haskell beginners 2022]: Lecture 2 about pattern matching, algebraic data types, parametric polymorphism and function composition]]. ~ Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- A history of Artificial Intelligence. ~ S. Hussain Ather (@SHussainAther). #AI #History
- Automated Theorem Proving. ~ Arnon Avron, Mooly Sagiv. #ATP #Logic #CompSci
- Certifying derivation of state machines from coroutines. ~ Mirai Ikebuchi, Andres Erbsen, Adam Chlipala. #ITP #Coq
- DSLsofMath Week 1: Extra lecture on Haskell, part 1/3. ~ Patrik Jansson (@patrikja). #Haskell #FunctionalProgramming
- DSLsofMath Week 1: Extra lecture on Haskell, part 2/3. ~ Patrik Jansson (@patrikja). #Haskell #FunctionalProgramming
- DSLsofMath Week 1: Extra lecture on Haskell, part 3/3. ~ Patrik Jansson (@patrikja). #Haskell #FunctionalProgramming
- DSLsofMath Week 1, Lecture 1, Part 1. ~ Patrik Jansson (@patrikja). #Haskell #FunctionalProgramming #Math
- DSLsofMath Week 1, Lecture 1, Part 2. ~ Patrik Jansson (@patrikja). #Haskell #FunctionalProgramming #Math
- Effective metatheory for type theory. ~ Philipp Georg Haselwarter. #PhD_Thesis #TypeTheory
- Verified first-order monitoring with recursive rules. ~ Sheila Zingg, Sr̄dan Krstíc, Martin Raszyk, Joshua Schneider, Dmitriy Traytel. #ITP #IsabelleHOL
- Computability and l²-Betti numbers. ~ Matthias Uschold. #MSc_Thesis #ITP #LeanProver
- An axiomatic basis for computer programming. ~ C. A. R. Hoare (1969). #CompSci
- A practical guide to writing tactics in Lean. ~ Daniel J. Velleman. #ITP #LeanProver
- Lambda calculus: an Elm CLI. ~ James Carlson. #Elm #FunctionalProgramming #LambdaCalculus
- From greek paradoxes to political paradoxes. ~ Moshe Y. Vardi (@vardi). #Logic
- The design and use of QuickCheck. ~ Joe “begriffs” Nelson (2017). #Haskell #FunctionalProgramming
- Formalising extremal graph theory, I. ~ Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Transposing rows. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Recursive functions of symbolic expressions and their computation by machine. ~ John McCarthy (1960). #CompSci #Lisp
- The foundations of arithmetic: a logico-mathematical enquiry into the concept of number. ~ Gottlob Frege (1884). #Logic #Math via @internetarchive
- Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl. ~ Gottlob Frege (1884). #Logic #Math via @internetarchive
- SciLean: Framework for scientific computing written in Lean. ~ Tomas Skrivnan. #ITP #LeanProver #FunctionalProgramming #Math
- Computing machinery and intelligence. ~ Alan Mathison Turing (1950). #CompSci #AI via @internetarchive
- A treatise on algebra. ~ George Peacock (1830).
- Logic and artificial intelligence. ~ Richmond Thomason (2018). #Logic #AI
- Automated reasoning. ~ Frederic Portoraro (2019) #ATP #Logic #Math #CompSci
- The emergence of first-order logic. ~ William Ewald (2018). #Logic #Math #History
- The early development of set theory. ~ José Ferreirós (2020). #Logic #Math #SetTheory #History
- The development of proof theory. ~ Jan von Plato (2014). #Logic #Math #History
- “History of logic” (Encyclopedia Britannica). ~ Jaakko J. Hintikka, Paul Vincent Spade. #Logic #Math #CompSci #History
- Proof assistants: History, ideas and future. ~ H. Geuvers (2009). #ITP #Logic #Math #CompSci #History
- Twenty years of theorem proving for HOLs (Past, present and future). ~ Mike Gordon (2008). #Logic #CompSci #ITP
- Delta dictionaries (Total and extensional finite maps in proof assistants). ~ Nick Collins. #ITP #Agda
- Introduction to computation: Haskell, logic and automata. ~ Don Sannella, Michael Paul Fourman, Haoran Peng, Philip Wadler. #Haskell #FunctionalProgramming #Logic #CompSci
- About that Reader trick. ~ Micah Cantor (@micah_cantor). #Haskell #FunctionalProgramming
- Undefined values, or what do we get when we divide by zero? ~ Lawrence C. Paulson. #Logic #Math #ITPa
- Explaining list folds (An easy explanation of the fold-left and fold-right functions). ~ Tony Morris (2013). #Haskell #FunctionalProgramming
- Parse, don’t validate. ~ Alexis King (@lexi_lambda). #Haskell #FunctionalProgramming
- Servant’s type-level domain specific language. ~ Brad Parker (@parkerbrads). #Haskell #FunctionalProgramming
- Functor functors. ~ Benjamin Hodgson (2017). #Haskell #FunctionalProgramming
- Providing an API for extensible-effects and monad transformers. ~ Ollie Charles (@acid2). #Haskell #FunctionalProgramming
- Continuations all the way down. ~ T. Humphries./#/posts/2017/05/10/lambdajam-slides/index.html #Haskell #FunctionalProgramming
- Applicative regular expressions using the free Alternative. ~ Justin Le (@mstk). #Haskell #FunctionalProgramming
- Profunctors, arrows, & static analysis. Will Fancher (@ElvishJerricco). #Haskell #FunctionalProgramming
- Haskell learning resource collection. ~ Jack Kelly. #Haskell #FunctionalProgramming
- A symbolic analysis of relay and switching circuits. Claude Shannon (1938). #CompSci
- Clojure & Datalog is Lisp & Prolog. ~ Kari Marttila. #Clojure #Datalog #Lisp #Prolog #FunctionalProgramming #LogicProgramming
- [[https://youtu.be/UykGFDVfQNA][[London Learning Lean] Formalizing adèles and idèles]]. ~ María Inés de Frutos-Fernández. #ITP #LeanProver #Math
- Formalising Lie algebras. ~ Oliver Nash. #ITP #LeanProver #Math
- A practical guide to writing tactics in Lean. ~ Daniel J. Velleman. #ITP #LeanProver
- On computable numbers, with an application to the Entscheidungsproblem. ~ Alan Mathison Turing (1936). #CompSci #Logic #Math
- Building a consensus: A rectangle covering problem. ~ Richard S. Bird (2011). #Haskell #FunctionalProgramming
- Can you solve it? Gödel’s incompleteness theorem (The proof that rocked maths). ~ Alex Bellos (@alexbellos). #Logic #Math).
- 10+ beautiful mathematical documentaries to make students love Math. ~ @abakcus #Math
- Constructive theory of ordinals. ~ Thierry Coquand, Henri Lombardi, Stefan Neuwirth. #Logic #Math #SetTheory
- A Lisp interpreter implemented in Conway’s Game of Life. ~ Hikaru Ikuta (@woodrush924). #Lisp #Programming
- The role of functional programming in the organization of parallel computing. ~ Lidia V. Gorodnyaya. #FunctionalProgramming
- Domain-Specific Languages of Mathematics: Presenting mathematical analysis using functional programming. ~ Cezar Ionescu, Patrik Jansson (2016). #Haskell #FunctionalProgramming #Math
- Canonicity and normalization for type theory. ~ Thierry Coquand. #TypeTheory
- Le point de vue constructif en mathématiques. ~ Henri Lombardi. #Logic #Math
- Algèbre constructive. ~ Henri Lombardi. #Math
- [[https://youtu.be/lubSFfj4B08][[Formalising math 2022] Section 01 Logic, solutions to sheet 4 (“and”)]]. ~ Kevin Buzzard (@XenaProject) #ITP #LeanProver #Logic #Math
- [[https://youtu.be/tQSA7x4AWD4][[Formalising math 2022] Section 01 Logic, solutions to sheet 5 (“iff”)]]. ~ Kevin Buzzard (@XenaProject) #ITP #LeanProver #Logic #Math
- [[https://youtu.be/Mwx9zkQM-Kk][[Formalising math 2022] Section 01 Logic, solutions to sheet 6 (“or”)]]. ~ Kevin Buzzard (@XenaProject) #ITP #LeanProver #Logic #Math
- “Group” theory. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. ~ George Boole (1854). #Logic #Math
- La machine de Turing (1/2). ~ Patrice Debrabant. #CompSci #Scratch
- La préhistoire de l’informatique. ~ Bernard Ycart. #CompSci #History
- Learning logic programs from noisy failures. ~ John Wahlig. #MSc_Thesis #ILP #MachineLearning #LogicProgramming
- A simple formalization and proof for the mutilated chess board. ~ Lawrence C. Paulson (2001). #ITP #IsabelleHOL
- Without loss of generality. ~ John Harrison (2013). #ITP #HOL_Light
- Proving the obvious. ~ Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Building partially static libraries with Cabal. ~ James Hobson. #Haskell #FunctionalProgramming
- Learning programs by learning from failures. ~ Andrew Cropper, Rolf Morel (2020). #ILP #MachineLearning #LogicProgramming
- Popper: an inductive logic programming (ILP) system. ~ Andrew Cropper et als. #ILP #MachineLearning #LogicProgramming #Prolog
- Inductive logic programming at 30. ~ Andrew Cropper, Sebastijan Dumančić, Richard Evans, Stephen H. Muggleton. #ITP #MachineLearning #LogicProgramming
- Learning logic programs through divide, constrain, and conquer. ~ Andrew Cropper. #ILP #MachineLearning #LogicProgramming
- Inductive logic programming (Slides). ~ Andrew Cropper. #ILP #Logic #MachineLearning #LogicProgramming
- ProbLog: A probabilistic Prolog and its application in link discovery. ~ Luc De Raedt, Angelika Kimmig, Hannu Toivonen (2007). #LogicProgramming #LogicProgramming
- DeepProbLog: an extension of ProbLog that integrates probabilistic logic programming with deep learning by introducing the neural predicate. ~ Robin Manhaeve. #LogicProgramming #DeepLearning
- Neural probabilistic logic. ~ Robin Manhaeve (Supervisor: Luc De Raedt). #PhD_Thesis #AI #DeepLearning #LogicProgramming #MachineLearning
- Beneficial and harmful explanatory machine learning. ~ Lun Ai1, Stephen H. Muggleton, Céline Hocquette, Mark Gromowski, Ute Schmid. #ILP #MachineLearning #AI #XAI
- Complete bottom-up predicate invention in meta-interpretive learning. ~ Céline Hocquette, Stephen H Muggleton. #ILP #MachineLearning #LogicProgramming
- [[https://youtu.be/OZLfDQKbdFk][[Formalising math 2022] Section 01 Logic, solutions to sheet 1]]. ~ Kevin Buzzard (@XenaProject) #ITP #LeanProver #Logic #Math
- [[https://youtu.be/JTl6NHNxyDk][[Formalising math 2022] Section 01 Logic, solutions to sheet 2]]. ~ Kevin Buzzard (@XenaProject) #ITP #LeanProver #Logic #Math
- [[https://youtu.be/qDKtXrOy6CM][[Formalising math 2022] Section 01 Logic, solutions to sheet 3]]. ~ Kevin Buzzard (@XenaProject) #ITP #LeanProver #Logic #Math
- The true method. ~ Gottfried Wilhelm Leibniz (1677). #Logic #CompSci #AI #Knowledge_representation #Automated_reasoning
- A Coq formalization of the Bochner integral. ~ Sylvie Boldo, François Clément, Louise Leclerc. #ITP #Coq #Math
- The art of Lisp & writing. ~ Richard Gabriel (2003). #Lisp #Programming
- Coq’s vibrant ecosystem for verification engineering. ~ Andrew W. Appel. #ITP #Coq
- A formal foundation for symbolic evaluation with merging. ~ Sorawee Porncharoenwase, Luke Nelson, Xi Wang, Emina Torlak. #ITP #LeanProver
- Verified online monitoring for metric temporal logic with lattice-based quantitative semantics. ~ Agnishom Chattopadhyay, Konstantinos Mamouras. #ITP #Coq #OCaml #FunctionalProgramming
- WebSpec: Towards machine-checked analysis of browser security mechanisms. ~ Lorenzo Veronese, Benjamin Farinier, Mauro Tempesta, Marco Squarcina, Matteo Maffei. #ITP #Coq
- Formalising mathematics: getting started (Video). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Formalising Mathematics (A course for mathematicians). ~ Kevin Buzzard (@XenaProject) #ITP #LeanProver #Math
- Deriving efficient program transformations from rewrite rules. ~ John M. Li, Andrew W. Appel. #ITP #Coq
- Functional correctness of C implementations of Dijkstra’s, Kruskal’s, and Prim’s algorithms. ~ Aquinas Hobor, Anshuman Mohan, Wei Xiang. #ITP #Coq
- Demostración en una línea del teorema de Varignon. ~ Miguel Ángel Morales (@gaussianos). #Matemáticas
- “Program development by stepwise refinement”. ~ Niklaus Wirth (1971). #CompSci
- Dynamic programming in Haskell. ~ Amogh Rathore (@RathoreAmogh). #Haskell #FunctionalProgramming
- Beatty’s theorem. ~ John D. Cook (@JohnDCook). #Math #Python
- Pasado, presente y futuro de los lenguajes de programación. ~ Ricardo Peña Marí (2017). #Programación
- Program / Proof. ~ Samuel Mimram. #Agda #FunctionalProgramming #ITP #Logic
- Haskell Beginners 2022: Lecture 1 about Haskell and FP fundamentals. ~ Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- History of Lisp. ~ John McCarthy (1979). #Lisp #FunctionalProgramming
- Three paradigms of Computer Science. ~ Amnon H. Eden (2007). #CompSci
- The philosophy of computer languages. ~ Graham White (2004). #CompSci
- Tutorial on good Lisp programming style. ~ Peter Norvig and Kent Pitman (1993). #Lisp #Programming
- 2021 - The Bottom Line. ~ Mathlib community. #ITP #LeanProver #Mathlib
- Lenses to the left of me, Prisms to the right. ~ Bruno Gavranović (@bgavran3). #CategoryTheory #FunctionalProgramming #Haskell
- Towards categorical foundations of learning. ~ Bruno Gavranović (@bgavran3). #CategoryTheory #DeepLearning
- A neural network solves and generates mathematics problems by program synthesis: Calculus, differential equations, linear algebra, and more. ~ Iddo Drori et als. #MachineLearning #Math
- A survey of symbolic logic. ~ Clarence Irving Lewis (1918). #Logic #Math
- Preparando Emacs para trabajar con Clojure. ~ Notxor. #Emacs #Clojure #FunctionalProgramming
- The paradox at the heart of mathematics: Gödel’s Incompleteness Theorem. ~ Marcus du Sautoy. #Logic #Math
- Types in logic programming (An overview of type systems proposed for logic programming languages). ~ Wolfgang Witt. #LogicProgramming #TypeTheory #Mercury
- Extracting certified Futhark code from Coq. ~ Kristian Knudsen Olesen. #BSc_Thesis #ITP #Coq
- Practical heterogeneous unification for dependent type checking. ~ Víctor López Juan. #PhD_Thesis #ITP #Agda #FunctionalProgramming
- The solutions to single-variable polynomials, implemented and verified in Lean. ~ Nicholas Dyson, Benedikt Ahrens, Jacopo Emmenegger. #ITP #LeanProver #Math
- Explanation by automated reasoning using the Isabelle infrastructure framework. ~ Florian Kammüller. #ITP #IsabelleHOL #XAI #AI #MachineLearning
- Pappus’s hexagon theorem in real projective plane. ~ Roland Coghetto. #ITP #Mizar #Math
- Ascoli-Arzel`a theorem (in Mizar). ~ Hiroshi Yamazaki. #ITP #Mizar #Math
- A comprehensive formalization of AADL with behavior annex. ~ Yu Tan, Yongwang Zhao, Dianfu Ma, and Xuejun Zhang. #ITP #IsabelleHOL
- Machine checked properties of the Schulze method. ~ Mukesh Tiwari, Dirk Pattinson. #ITP #Coq
- On weakly associative lattices and near lattices (in Mizar). ~ Damian Sawicki, Adam Grabowski. #ITP #Mizar #Math
- On a property of the class of all real algebraic numbers. ~ Georg Cantor (1874). #Logic #Math #SetTheory
- Sobre una propiedad del conjunto de los números algebraicos reales. ~ Georg Cantor (1874). #Lógica #Matemática #Teoría_de_conjuntos vía @kroftopkin
- Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. ~ Georg Cantor (1874). #Logic #Math #SetTheory
- Functional pearl: How to find a fake coin. ~ Richard S. Bird (2019). #Haskell #FunctionalProgramming
- Machine learning: Algorithms, models, and applications. ~ Jaydip Sen et als. #eBook #MachineLearning
- Databass, Part 1: Queries. ~ Joseph Morag. #Haskell #FunctionalProgramming
- Databass, Part 2: Inserting into the database. ~ Joseph Morag. #Haskell #FunctionalProgramming
- Buen código, teoría y la programación funcional por Felipe Santa-Cruz (@Felipe_StaCruz) y Camilo Chacón Sartori (@camilo_chacon_s) en “Había una vez un algoritmo…” #Podcast #Programación #ProgramaciónFuncional
- Knowledge representation for explainable artificial intelligence: Modeling foundations from complex systems. ~ Joaquín Borrego Díaz, Juan Galán Páez. #AI #KR #XAI
- Continuation-passing style, defunctionalization, accumulations, and associativity. ~ Jeremy Gibbons (@jer_gib). #FunctionalProgramming #Haskell
- Algorithmics. ~ Richard Bird‚ Jeremy Gibbons‚ Ralf Hinze‚ Peter Hoefner‚ Johan Jeuring‚ Lambert Meertens‚ Bernhard Moeller‚ Carroll Morgan‚ Tom Schrijvers‚ Wouter Swierstra and Nicolas Wu (2020). #Algorithmic_programming
- Functional programming. ~ Ralf Hinze (2019). #Haskell #FunctionalProgramming
- Introduction to classical and quantum computing. ~ Thomas G. Wong (@thomasgwong). #eBook #Quantum_computing #CompSci
- Effect algebras, Girard quantales and complementation in separation logic. ~ Callum Bannister, Peter Höfner, Georg Struth. #ITP #IsabelleHOL
- Reasoning about effect interaction by fusion. ~ Zhixuan Yang, Nicolas Wu (2021). #Haskell #FunctionalProgramming
- Structured handling of scoped effects. ~ Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers. #Haskell #FunctionalProgramming
- Fantastic morphisms and where to find them (A guide to recursion schemes). ~ Zhixuan Yang and Nicolas Wu (2019). #Haskell #FunctionalProgramming
- An investigation of the laws of thought: On which are founded the mathematical theories of logic. ~ George Boole (1854). #Logic #Matha via @internetarchive
- “Recursividad, investigación y el valor de los fundamentos” por Manuel Rubio-Sánchez (@MRubSan) y Camilo Chacón Sartori (@camilo_chacon) en “Había una vez un algoritmo…”. #Podcast #Programación #Computación #Matemáticas
- “Programación funcional, Clojure y el amor a la informática” por Andros Fenollosa (@androsfenollosa) y Camilo Chacón Sartori (@camilo_chacon) en “Había una vez un algoritmo…”. #ProgramaciónFuncional #Clojure
- The humble programmer. ~ Edsger W. Dijkstra (1972). #CompSci
- El programador humilde. ~ Edsger W. Dijkstra (1972). #Programación
- Thinking above the code (Video). ~ Leslie Lamport (2014). #CompSci
- Thinking above the code (Slides). ~ Leslie Lamport (2014). #CompSci
- Polynomial functors: A general theory of interaction. ~ David I. Spivak, Nelson Niu. #CategoryTheory via @Iceland_jack
- A list of projects providing tactics for Agda. ~ Wen Kokke (@wenkokke). #ITP #Agda
- Linearity and uniqueness: An entente cordiale. ~ Daniel Marshall, Michael Vollmer, and Dominic Orchard. #Granule #FunctionalProgramming via @brendanzab
- Exercises for the Haskell Beginners 2022 course. ~ Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- Bottom-up synthesis of recursive functional programs using angelic execution. ~ Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, Isil Dillig. #OCaml #FunctionalProgramming
- Los principios de la aritmética presentados por un nuevo método. ~ Giuseppe Peano (1889). #Lógica #Matemática via @kroftopkin
- “Arithmetices principia, nova methodo exposita” or “The principles of arithmetic, presented by a new method” (both in the original latin and in parallel english translation with modern mathematical notation). ~ Giuseppe Peano (1889). #Logic #Math
- Arithmetices principia: nova methodo. ~ Giuseppe Peano (1889). #Logic #Math via @internetarchive
- From LCF to HOL: a short history. ~ Michael J. C. Gordon (2000). #ITP #LCF #HOL
- Propositions as types. ~ Philip Wadler (2014). #Logic #CompSci
- The de Bruijn criterion vs the LCF architecture. ~ Lawrence Paulson. #ITP
- Formal verification of a cognitive agent using theorem proving. ~ Alexander Birch Jensen. #ITP #IsabelleHOL
- A constructive and synthetic theory of reducibility (Myhill’s isomorphism theorem and Post’s problem for many-one and truth-table reducibility in Coq). ~ Yannick Forster, Felix Jahn, Gert Smolka. #ITP #Coq
- Computability in constructive type theory. ~ Yannick Forster. #PhD_Thesis #ITP #Coq
- Implementation of Bellard’s algorithm for calculating pi to ‘n’ digits in Haskell. ~ Calvin Beck. #Haskell #FunctionalProgramming #Math
- Tealeaves: a Coq framework for proving theorems about syntax abstractly. ~ Lawrence Dunn. #ITP #Coq
- Knight’s tour revisited revisited (in Isabelle/HOL). ~ Lukas Koller. #ITP #IsabelleHOL
- A dependent dependency calculus. ~ Pritam Choudhury, Harley Eades III, Stephanie Weirich. #Dependent_types #Coq
- This month in mathlib (Dec 2021). #ITP #LeanProver #Math
- How to implement the lambda calculus, quickly. ~ Stephanie Weirich. #Haskell #FunctionalProgramming #LambdaCalculus
- Modular, compositional, and executable formal semantics for LLVM IR. ~ Yannick Zakowski, Calvin Beck, Irene Yoon, Ilya Zaichuk, Vadim Zaliva, and Steve Zdancewic. #ITP #Coq
- A type system for extracting functional specifications from memory-safe imperative programs. ~ Paul He, Eddy Westbrook, Brent Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer, Andrei Ştefănescu, Aaron Tomb, Adam Wick, Matthew Yacavone, Steve Zdancewic. #ITP #Coq
- Formally verified quantum programming. ~ Robert Rand (2018). #PhD_Thesis #ITP #Coq #QuantumProgramming
- Hyperdual numbers and forward differentiation (in Isabelle/HOL). ~ Filip Smola and Jacques Fleuriot. #ITP #IsabelleHOL #Math
- The foundations of arithmetic: a logico-mathematical enquiry into the concept of number. ~ Gottlob Frege (1884). #Logic #Math
- Los fundamentos de la aritmética. ~ Gottlob Frege (1884). #Lógica #Matemática
- Die Grundlagen der Arithmetik : eine logisch mathematische Untersuchung über den Begriff der Zahl. ~ Gottlob Frege (1884). #Logic #Math
- Cryptography with Prolog. ~ Markus Triska (@MarkusTriska). #Prolog #LogicProgramming
- Cryptography with Prolog (Video). ~ Markus Triska (@MarkusTriska). #Prolog #LogicProgramming
- Pirouette: Higher-Order typed functional choreographies. ~ Andrew K. Hirsch (@andrewkhirsch), Deepak Garg. #ITP #Coq
- RefinedC: Automating the foundational verification of C code with refined ownership types. ~ Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, Deepak Garg. #ITP #Coq
- VIP: Verifying real-world C idioms with integer-pointer casts. ~ Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert Krebbers, Derek Dreyer, Peter Sewell. #ITP #Coq
- Consejos y reglas de un simple programador. ~ Camilo Chacón Sartori (@camilo_chacon_s). #Computación #Aprendizaje #Filosofía
- Connectivity graphs: A method for proving deadlock freedom based on separation logic. ~ Jules Jacobs, Stephanie Balzer and Robbert Krebbers. #ITP #Coq
- Tutorial implementation of Hoare logic in Haskell. ~ Boro Sitnikovski (@BSitnikovski). #Haskell #FunctionalProgramming
- Simuliris: A separation logic framework for verifying concurrent program optimizations. ~ Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hai Dang, Robbert Krebbers, Jeehong Kang and Derek Dreyer. #ITP #Coq
- Intrinsically typed compilation with nameless labels. ~ Arjen Rouvoet, Robbert Krebbers and Eelco Visser. #ITP #Agda #FunctionalProgramming
- Machine-checked semantic session typing. ~ Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers and Jesper Bengtson. #ITP #Coq
- Compositional non-interference for fine-grained concurrent programs. ~ Dan Frumin, Robbert Krebbers and Lars Birkedal. #ITP #Coq
- Transfinite Iris: resolving an existential dilemma of step-indexed separation logic. ~ Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer and Lars Birkedal. #ITP #Coq
- ReLoC reloaded: A mechanized relational logic for fine-grained concurrency and logical atomicity. ~ Dan Frumin, Robbert Krebbers and Lars Birkedal. #ITP #Coq
- Actris 2.0: Asynchronous session-type based reasoning in separation logic. ~ Jonas Kastberg Hinrichsen, Jesper Bengtson and Robbert Krebbers. #ITP #Coq
- The challenge of computer mathematics. ~ Henk Barendregt and Freek Wiedijk (2005). #ITP #Math
- El análisis matemático de la lógica. ~ George Boole (1847). #Lógica #Matemática
- The mathematical analysis of logic. ~ George Boole (1847). #Math via @internetarchive
- Gale-Shapley algorithm (in Isabelle/HOL). ~ Tobias Nipkow. #ITP #IsabelleHOL
- Roth’s theorem on arithmetic progressions (in Isabelle/HOL). ~ Chelsea Edmonds, Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Automated theorem proving in the classroom. ~ Wolfgang Windsteiger. #ITP #ATP #Logic #Math
- Automated theorem proving in the classroom. ~ Wolfgang Windsteiger. #ITP #ATP #Logic #Math
- Lucas’s theorem: formalising generating function proofs. ~ Chelsea Edmonds (2020). #ITP #IsabelleHOL #Math
- Sharing geometry proofs across logics and systems. ~ Gilles Dowek. #ITP #Dedukti #Logic #Math
- Foundations of formal proof systems. ~ Benjamin Werner. #Logic #Math
- FindFacts: A scalable theorem search. ~ Fabian Huch and Alexander Krauss (2020). #ITP #IsabelleHOL
- Simple type theory is not too simple: Grothendieck’s schemes without dependent types. ~ Anthony Bordg, Lawrence Paulson, Wenda Li. #TypeTheory #ITP #IsabelleHOL
- LIME: Learning inductive bias for primitives of mathematical reasoning. ~ Yuhuai Wu, Markus Rabe, Wenda Li, Jimmy Ba, Roger Grosse, Christian Szegedy. #ITP #MachineLearning #Math
- Towards justifying computer algebra algorithms in Isabelle/HOL. ~ Wenda Li (2019). #PhD_Thesis #ITP #IsabelleHOL #Math
- INT: An inequality benchmark for evaluating generalization in theorem proving. ~ Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, Roger Grosse. #ITP #MachineLearning
- Approche combinatoire pour l’automatisation en Coq des preuves formelles en géométrie d’incidence projective. ~ David Braun (2019). #PhD_Thesis #ITP #Coq #Math
- Mechanization of incidence projective geometry in higher dimensions, a combinatorial approach. ~ Pascal Schreck, Nicolas Magaud and David Braun. #ITP #Coq #Math
- Automated generation of illustrations for synthetic geometry proofs. ~ Predrag Janičić and Julien Narboux. #ATP #Math
- Proofs in theories. ~ Gilles Dowek (2018). #eBook #Logic #Math
- Computational logic in the first semester of computer science: An experience report. ~ David M. Cerna, Martina Seidl, Wolfgang Schreiner, Wolfgang Windsteiger, Armin Biere (2020). #Logic #ITP #ATP
- Three different ways to prove Dandelin-Gallucci theorem. ~ David Braun, Nicolas Magaud, Pascal Schreck. #ITP #Coq #Math
- Formalising geometric axioms for Minkowski spacetime and without-loss-of-generality theorems. ~ Richard Schmoetten, Jake Palmer, Jacques Fleuriot. #ITP #IsabelleHOL #Math
- Improving automated strategies for univariate quantifier elimination. ~ Katherine Cordwell, Cesar A. Muñoz, and Aaron M. Dutle. #ITP #PVS #Math
- Formal verification of MILS partition scheduling module using layered methods. ~ Yang Gao, Xia Yang, Wensheng Guo, and Xiutai Lu. #ITP #Coq
- Haskell beginners 2022: Lecture 1 (Fundamentals). ~ Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- Haskell beginners 2022: Lecture 2 (Data). ~ Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- Haskell beginners 2022: Lecture 3 (Typeclasses). ~ Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- ¿Pueden pensar las computadoras digitales? ~ Alan Turing (1951). #Computación #IA
- Getting bap in the browser 1. ~ Philip Zucker (@SandMouth). #Ocaml #FunctionalProgramming
- Tractatus Logico-Philosophicus. ~ Ludwig Wittgenstein (1922). #Logic
- Advent of Haskell: Denotational design. ~ Armando Santos (@_bolt12). #Haskell #FunctionalProgramming
- Selective functors & probabilistic programming. ~ Armando Santos (@_bolt12). #MSc_Thesis #Haskell #FunctionalProgramming
- Jupyter adaptation of “Learn You a Haskell for Great Good!” ~ James Brock (@jamesdbrock) #Haskell #FunctionalProgramming #Jupyter
- Temas interactivos de programación funcional con Haskell. ~ J.A. Alonso. #Haskell #FunctionalProgramming #Jupyter
- Compiling quantamorphisms for the IBM Q experience. ~ Ana Neri, Rui Soares Barbosa, José N. Oliveira. #Haskell #FunctionalProgramming #Quantum_computing
- Towards quantum program calculation. ~ Ana Neri (2018). #MSc_Thesis #Haskell #FunctionalProgramming #Quantum_computing
- Propiedades del número 2022. ~ Antonio Roldán (@Connumeros). #Matemáticas
- The source code of Defect Process. ~ Jonathan Thaler (@JonathanThaler). #Haskell #FunctionalProgramming
- Extending merge resolution to a family of proof systems. ~ Sravanthi Chede, Anil Shukla. #Logic #CompSci
- Extending Prolog for quantified boolean Horn formulas. ~ Anish Mallick, Anil Shukla. #Prolog #LogicProgramming
- Readings on computational logic, interactive theorem proving, and functional programming. #ITP #FunctionalProgramming
- Machine checked properties of the Schulze method. ~ Mukesh Tiwari and Dirk Pattinson. #ITP #Coq
- Comprehensive Python cheatsheet. ~ Jure Šorn. #Python
- Engineering elegant systems: Systems as mathematical categories. ~ Michael D. Watson (2019). #CategoryTheory
- Category theory for Engineers. ~ Larry A. Lambe (2018). #CategoryTheory
- Categories, mathematics, and systems. ~ Larry A. Lambe (2018). #CategoryTheory
- Teaching automated reasoning and formally verified functional programming in Agda and Isabelle/HOL. ~ Jørgen Villadsen. #ITP #Agda #IsabelleHOL
- Formally verified verifiable electronic voting scheme. ~ Mukesh Tiwari. #PhD_Thesis #ITP #Coq
- Principia Mathematica (Vol. 1). ~ Alfred North Whitehead and Bertrand Russell (1910). #Logic #Math
- Principia Mathematica (Vol. 2). ~ Alfred North Whitehead and Bertrand Russell (1912). #Logic #Math
- Principia Mathematica (Vol. 3). ~ Alfred North Whitehead and Bertrand Russell (1927). #Logic #Math
- Computational logic: its origins and applications. ~ Lawrence C. Paulson (2018). #Logic #CompSci #ITP
- The Principia Rewrite project (rewriting ‘Principia Mathematica’ in Coq). ~ Landon D. C. Elkind (@LogicalAtomist) et als. #ITP #Coq #Logic #Math
- Performing security proofs of stateful protocols. ~ Andreas V. Hess, Sebastian Mödersheim, Achim D. Brucker and Anders Schlichtkrull. #ITP #IsabelleHOL
- Formalization of logic in the Isabelle proof assistant. ~ Anders Schlichtkrull (2018). #PhD_Thesis #ITP #IsabelleHOL #Logic
- Hybrid logic. ~ Asta Halkjær From (2020). #MSc_Thesis #ITP #IsabelleHOL #Logic
- History of Logic. ~ Prathyush (@prathyvsh). #Logic
- Liquid Tensor Experiment: an update. ~ Johan Commelin. #ITP #LeanProver #Math
- Resources for learning Category Theory for an enthusiast. ~ Prathyush (@prathyvsh). #CategoryTheory
- La reina de las ciencias (algunos contenidos esenciales de la ciencia matemática). ~ Emilio Méndez Pinto (@kroftopkin). #Lógica #Matemática #Historia
- Introduction to the seL4 proofs. ~ Matthew Brecknell (@mbrcknl). #ITP #IsabelleHOL
- A compositional proof framework for FRETish requirements. ~ Esther Conrad, Laura Titolo, Dimitra Giannakopoulou, Thomas Pressburger, Aaron Dutle. #ITP #PVS
- Formal analysis of the compact position reporting algorithm. ~ Aaron Dutle, Mariano M. Moscato, Laura Titolo, César A. Muñoz, Gregory Anderson, and François Bobot. #ITP #PVS
- Formal verification of semi-algebraic sets and real analytic functions. ~ J. Tanner Slagel, Lauren White, and Aaron Dutle. #ITP #PVS #Mat
- Classification of finite fields with applications. ~ Hing-Lun Chan and Michael Norrish (2019). #ITP #HOL4 #Math
- Proof pearl: Bounding least common multiples with triangles. ~ Hing-Lun Chan and Michael Norrish (2019). #ITP #HOL4 #Math
- A string of pearls: Proofs of Fermat’s little theorem. ~ Hing-Lun Chan and Michael Norrish (2013). #ITP #HOL4 #Math
- Mechanised modal model theory. ~ Yiming Xu and Michael Norrish (2020). #ITP #HOL4 #Logic
- Formalizing modal logic in HOL. ~ Yiming Xu. #BSc_Thesis #ITP #HOL4 #Logic
- Category theory: Lecture notes and online books. ~ Peter Smith (@PeterSmith). #CategoryTheory
- People, ideas, milestones: a scientometric study of computational thinking. ~ M. Saqr, K. Ng, S. Oyelere, M. Tedre. #Computational_thinking
- Names and numbers for modal logic axioms. ~ John D. Cook (@JohnDCook). #Logic
- On the relational translation method for propositional modal logics. ~ Jian Zhang. #ATP #OTTER
- Learning higher-order programs without meta-interpretive learning. ~ Stanisław J. Purgał, David M. Cerna, Cezary Kaliszyk. #ITP #MachineLearning #LogicProgramming #Prolog #ASP
- Inductive and coinductive predicate liftings for effectful programs. ~ Niccolò Veltri, and Niels F.W. Voorneveld. #ITP #Agda
- A cartesian bicategory of polynomial functors in Homotopy Type Theory. ~ Eric Finster, Samuel Mimram, Maxime Lucas, Thomas Seiller. #ITP #Agda #HoTT
- Theorem Proving Haiku. #ITP
- Importing CSV data with Haskell and the World’s dependency on fossil fuels. ~ Fábio Molinar. #Haskell #FunctionalProgramming
- To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism. (Edited by J.P. Seldin and J.R. Hindley, 1980). #Logic #Math #LambdaCalculus via @breandan
- Évolution des mathématiques au XXe siècle et après. ~ Hourya Benis and Mirna Džamonja #Math
- Théorie de la démonstration. ~ Pierre-Louis Curien (2009). #Logic #Math
- Cours: Preuves assistées par ordinateur (hiver 2021). ~ Hugo Herbelin, and Théo Zimmermann. #ITP #Coq
- Logic and mechanized reasoning. ~ Jeremy Avigad, Marijn J. H. Heule, and Wojciech Nawrocki. #eBook #Logic #Math #LeanProver #FunctionalProgramming #SAT #SMT
- Logic and mechanized reasoning (Repository). ~ Jeremy Avigad, Marijn J. H. Heule, and Wojciech Nawrocki. #Logic #Math #LeanProver #FunctionalProgramming #SAT #SMT
- Logic and mechanized reasoning (Course). ~ Jeremy Avigad, Marijn J. H. Heule, and Wojciech Nawrocki. #Logic #Math #LeanProver #FunctionalProgramming #SAT #SMT
- Teaching logic and mechanized reasoning with Lean 4 (Slides). ~ Jeremy Avigad (Marijn Heule and Wojciech Nawrocki). #ITP #LeanProver #Logic
- Formal verification of transcendental fixed and floating point algorithms using an automatic theorem prover. ~ Samuel Coward, L. C. Paulson, Theo Drane and Emiliano Morini. #ATP #MetiTarski #Math
- A modular first formalisation of combinatorial design theory. ~ Chelsea Edmonds and L. C. Paulson. #ITP #IsabelleHOL
- Formal mathematics, dependent type theory, and the Topos Institute (Slides). ~ Jeremy Avigad. #ITP #LeanProver #Math
- Formal mathematics, dependent type theory, and the Topos Institute (Video). ~ Jeremy Avigad. #ITP #LeanProver #Math
- Implementing a functional language with graph reduction. ~ Thomas Mahler. #Haskell #FunctionalProgramming
- EditorConfig y Emacs. ~ Notxor. #Emacs
- Theorem proving in Lean 4. ~ Jeremy Avigad, Leonardo de Moura, Soonho Kong and Sebastian Ullrich. #Lean4 #ITP #FunctionalProgramming
- Proof automation (Class 1: Impacts). ~ Talia Ringer (@TaliaRinger). #Proof_engineering #ITP #Coq
- Proof automation (Spring 2022). ~ Talia Ringer (@TaliaRinger). #Proof_engineering #ITP
- QED at large: A survey of engineering of formally verified software. ~ Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. #Proof_engineering #ITP
- Implementing Euclid’s straightedge and compass constructions in type theory. ~ Ariel Kellison, Mark Bickford, and Robert Constable (2019). #ITP #Nuprl #Math
- Formalizing ordinal partition relations using Isabelle/HOL. ~ Mirna Džamonja, Angeliki Koutsoukou-Argyraki, and Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Formalising Ramsey theory, I. ~ Lawrence Paulson. #ITP #IsabelleHOL #Math
- Regular tree relations (in Isabelle/HOL). ~ Alexander Lochmann, Bertram Felgenhauer, Christian Sternagel, René Thiemann, and Thomas Sternagel. #ITP #IsabelleHOL
- Verified algorithms for solving Markov decision processes (in Isabelle/HOL). ~ Maximilian Schäffeler, Mohammad Abdulaziz. #ITP #IsabelleHOL #Math
- Markov decision processes with rewards (in Isabelle/HOL). ~ Maximilian Schäffeler and Mohammad Abdulaziz. #ITP #IsabelleHOL #Math
- Hoogle+ is a type-driven synthesis engine for Haskell - like Hoogle but able to find compositions of functions. Given a Haskell type, Hoogle+ generates terms that inhabit this type by composing library components. #Haskell #FunctionalProgramming
- Hoogle+: Type-driven, component based synthesis, showcasing TYpe Guided Abstract Refinement (TYGAR). ~ Zheng Guo (@AaronGuo069). #Haskell #FunctionalProgramming
- Program synthesis by type-guided abstraction refinement. ~ Zheng Guo et als. #Haskell #FunctionalProgramming
- Digging for fold: Synthesis-aided API discovery for Haskell. ~ Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova. #Haskell #FunctionalProgramming
- [[https://aaronguo1996.github.io/talk/tygar/tygar_v4.pdf][Hoogle+: Program synthesis by type-guided abstraction refinement [Slides]]]. ~ Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. #Haskell #FunctionalProgramming
- Co-presheaf optics. ~ Bartosz Milewski (@BartoszMilewski). #CategoryTheory
- MetaCoq: a project formalizing Coq in Coq and providing tools for manipulating Coq terms and developing certified plugins (i.e. translations, compilers or tactics) in Coq. #ITP #Coq
- The MetaCoq project. ~ Matthieu Sozeau et als. #ITP #Coq
- [[https://dannenkov.me/papers/COBRA2021-slides.pdf][Smart contracts in a proof assistant [Slides]]]. ~ Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, Bas Spitters #ITP #Coq
- Mathématiques assistées par ordinateur. ~ Assia Mahboubi. #ITP #Coq #Math
- Machine-checked mathematics. ~ Assia Mahboubi. #ITP #Coq #Math
- Extracting functional programs from Coq, in Coq. ~ Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, Bas Spitters. #ITP #Coq
- The undecidability of first-order logic over small signatures. ~ Johannes Hostert (Advisors: Andrej Dudenhefner and Dominik Kirst). #BSc_Thesis #ITP #Coq #Logic #Math
- Modeling Peano Arithmetic in constructive type theory (Undecidability and Tennenbaum’s theorem). ~ Marc Hermes (Advisors: Dominik Kirst and Moritz Weber). #MSc_Thesis #ITP #Coq #Logic #Math
- Extracting smart contracts tested and verified in Coq. ~ Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, Bas Spitters. #ITP #Coq
- Undecidability, incompleteness, and completeness of second-order logic in Coq. ~ Mark Koch, Dominik Kirst. #ITP #Coq #Logic #Math
- Formalising metamathematics in constructive type theory. ~ Dominik Kirst. #ITP #Coq #Logic #Math
- Formalizing implicative algebras in Coq. ~ Étienne Miquey. #ITP #Coq
- Realizabilidad clásica y efectos colaterales: Extendiendo la correspondencia de Curry-Howard. ~ Étienne Miquey. #Logic #CompSci
- Curry-Howard: unveiling the computational content of proofs. ~ Étienne Miquey. #Logic #CompSci
- The benefits of sequent calculus. ~ Étienne Miquey. #Logic #CompSci
- An excursion in formal verification with Coq. ~ Oliver Nash. #ITP #Coq #Math
- How Gödel discovered his incompleteness theorems. ~ Jan von Plato. #Logic #Math
- Windmills of the minds: an algorithm for Fermat’s Two Squares Theorem. ~ Hing Lun Chan. #ITP #HOL4 #Math
- Meta-analysis of type theories with an application to the design of formal proofs. ~ Anja Petković Komel (Adviser: Andrej Bauer). #PhD_Thesis #TypeTheory #ITP
- A computational and abstract approach to Gödel’s first incompleteness theorem. ~ Benjamin Peters. #Logic #Math
- Synthetic undecidability and incompleteness of first-order axiom systems in Coq. ~ Dominik Kirst, Marc Hermes. #ITP #Coq #Logic #Math
- CertiCAN: Certifying CAN analyses and their results. ~ Pascal Fradet, Xiaojie Guo, Sophie Quinton. #ITP #Coq
- L-types for resource awareness: an implicit name approach. ~ Silvia Ghilezan, Jelena Ivetić, Simona Kašterović, Pierre Lescanne. #Haskell #Agda #FunctionalProgramming
- Fermat’s Christmas Theorem: Fixed points come in pairs. ~ John Lawrence Aspden. #Clojure #FunctionalProgramming #Math
- A manifesto for applicable formal methods. ~ Mario Gleirscher, Jaco van de Pol, Jim Woodcock. #FormalMethods
- Composing transformers: ~ Felix Springer. #Haskell #FunctionalProgramming
- Parser combinators in Haskell. ~ Heitor Toledo Lassarote de Paula. #Haskell #FunctionalProgramming
- The year in math and computer science. ~ Bill Andrews. #Math CompSci
- Readability in proofs: the mean value theorem (in Isabelle/HOL). ~ Lawrence Paulson. #ITP #IsabelleHOL #Math
- Research groups working on formal proofs in Europe. #FormalMethods #ITP
- A machine-checked direct proof of the Steiner-Lehmus theorem. ~ Ariel Kellison. #ITP #Nuprl #Math
- Constructive and mechanised meta-theory of intuitionistic epistemic logic. ~ Christian Hagemeier, Dominik Kirst. #ITP #Coq #Logic
- Accurate calculation of euclidean norms using double-word arithmetic. ~ Vincent Lefèvre, Nicolas Louvet, Jean-Michel Muller, Joris Picot, Laurence Rideau. #ITP #Coq
- A Haskell implementation for a dependent type theory with definitions. ~ Qufei Wang. #MSc_Thesis #Haskell #FunctionalProgramming
- Functional approaches to programming (Lisp / Haskell: the diff tutorial). ~ Didier Verna (@didierverna). #Lisp #Haskell #FunctionalProgramming
- Learning to navigate the maze! ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Functional programming in Coq theorem prover (Lecture 3: induction on natural numbers). ~ Mukesh Tiwari (@mukesh_tiwari). #ITP #Coq
- CertiStr: A certified string solver (technical report). ~ Shuanglong Kan, Anthony W. Lin, Philipp Rümmer, Micha Schrader. #ITP #IsabelleHOL
- Formalization of Euclid’s elements book 1 in Dedukti. ~ Karnaj. #Math #ITP #Dedukti #Coq, #HOL_Light, #Lean, #Matita, #OpenTheory #PVS
- On homotopy of walks and spherical maps in homotopy type theory. ~ Jonathan Prieto-Cubides. #ITP #Agda #HoTT #Math
- Formal semantics and formally verified validation for temporal planning. ~ M. Abdulaziz, L. Koller. #ITP #IsabelleHOL
- GeoCoq: A formalization of geometry in Coq. ~ Julien Narboux (@jnarboux). #ITP #Coq #Math
- Verified compilation of quantum oracles. ~ Liyi Li, Finnegan Voichick, Kesha Hietala, Yuxiang Peng, Xiaodi Wu, Michael Hicks. #ITP #Coq
- Verifying a minimalist reverse-mode AD library. ~ Paulo Emílio de Vilhena, François Pottier. #ITP #Coq
- On planarity of graphs in homotopy type theory. ~ Jonathan Prieto-Cubides, Håkon Robbestad Gylterud. #ITP #Agda #HoTT #Math
- Fifty years of P vs. NP and the possibility of the impossible. ~ Lance Fortnow. #CompSci
- Declarative machine learning systems. ~ Piero Molino, Christopher Ré. #MachineLearning #AI
- Will AI destroy education? ~ Moshe Y. Vardi. #AI #Education
- Semantic cut elimination for the logic of bunched implications, formalized in Coq. ~ Dan Frumin. #ITP #Coq
- Semantics and contextual equivalence for probabilistic programs with nested queries and recursion. ~ Yizhou Zhang, Nada Amin. #ITP #Coq
- Johan Commelin interviews Yaël Dillies. #ITP #LeanProver #MathLib
- Type-level sharing in Haskell, now. ~ Edsko de Vries, Andres Löh, Adam Gundry, Sam Derbyshire. #Haskell #FunctionalProgramming
- Game rules with a Free Monad DSL. ~ Rogan Murley (@RoganMurley). #Haskell #FunctionalProgramming
- Understanding space leaks from StateT. ~ Ziyang Liu. #Haskell #FunctionalProgramming
- Do you know where Haskell is used? (Examples of how Haskell is used in different industries). ~ Catherine Galkina. #Haskell #FunctionalProgramming
- Materiales para el estudio de la programación funcional con Haskell. #Haskell #ProgramaciónFuncional
- Deducción automática (Vol. 1: Construcción lógica de sistemas lógicos). ~ José A. Alonso y Joaquín Borrego. ~ #Prolog #ProgramaciónLógica #Lógica #DAT
- HOWTO: Get started with Agda. ~ Jan Malakhovski. #Agda #FunctionalProgramming
- The decent way to learn functional programming. ~ Jan Malakhovski. #FunctionalProgramming #Haskell #Agda
- Completeness theorems for first-order logic analysed in constructive type theory. ~ Yannick Forster, Dominik Kirst, Dominik Wehr. #ITP #Coq #Logic
- Cómo factorizó Euler F5. ~ M.A. Morales (@gaussianos). #Matemáticas
- Formalization in Lean of IMO 2005 Q4. ~ Heather Macbeth. #ITP #LeanProver #Math #IMO
- CoSMed: A confidentiality-verified social media platform (in Isabelle/HOL). ~ Thomas Bauereiss, Andrei Popescu. #ITP #IsabelleHOL
- Formalising the foundations of discrete reinforcement learning in Isabelle/HOL. ~ Mark Chevallier, Jacques Fleuriot. #ITP #IsabelleHOL #MachineLearning #AI
- Mechanized verification of a fine-grained concurrent queue from Meta’s Folly Library. ~ S.F. Vindum, D Frumin, L Birkedal. #ITP #Coq
- Do Gödel’s incompleteness theorems matter?. ~ Lawrence Paulson #Logic #Math #ITP
- Implementation: Creating a maze environment. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming #Gloss
- Foundation of geometry in planes, and some complements: Excluding the parallel axioms (in Isabelle/HOL). ~ Fumiya Iwama. #ITP #IsabelleHOL #Math
- Formalizing higher-order termination in Coq. ~ Deivid Vale, Niels van der Weide. #ITP #Coq
- Simplicial complexes and boolean functions (in Isabelle/HOL). ~ Jesús Aransay, Alejandro del Campo, Julius Michaelis. #ITP #IsabelleHOL #Math
- An impossible asylum. ~ Jeremy Avigad, Seulkee Baek, Alexander Bentkamp, Marijn Heule, Wojciech Nawrocki. #ATP #Vampire #Logic
- “The genuine sieve of Eratosthenes” in Clojure. ~ Gary Verhaegen. #Clojure #FunctionalProgramming
- Certified abstract machines for skeletal semantics. ~ Guillaume Ambal, Sergueï Lenglet, Alan Schmitt. #ITP #Coq #OCaml #FunctionalProgramming
- Semilinear maps (in Lean). ~ Frédéric Dupuis. #ITP #LeanProver #Math
- A specification for typed template Haskell. ~ Matthew Pickering, Andres Löh, Nicolas Wu. #Haskell #FunctionalProgramming
- Formalising Lie algebras. ~ Oliver Nash. #ITP #LeanProver #Math
- A Coq formalization of Lebesgue integration of nonnegative functions. ~ Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, Micaela Mayero. #ITP #Coq #Math
- QRC1 in Coq (Formalizing a quantified modal logic). ~ Ana de Almeida Borges. #ITP #Coq #Logic
- Haskell’s type system standing alone. ~ Vitez. #Haskell #FunctionalProgramming
- Formalization of forcing in set theory. ~ Emmanuel Gunther, Miguel Pagano, Pedro Sánchez Terraf, Matías Steinberg. #ITP #IsabelleZF #Logic #Math #SetTheory
- Type-checking plugins, Part II: GHC’s constraint solver. ~ Sam Derbyshire. #Haskell #FunctionalProgramming
- ALEXANDRIA: Large-scale formal proof for the working mathematician. ~ Lawrence Paulson. #ITP #IsabelleHOL #Coq #LeanProver
- Fundamentals of logic and computation (With practical automated reasoning and verification). Zhe Hou. #eBook #Logic #CompSci #ITP #IsabelleHOL
- Validating safety arguments with Lean. ~ Logan Murphy, Torin Viger, Alessio Dia Sandro, Ramy Shahin, Marsha Chechik. #ITP #LeanProver
- This month in mathlib (Nov 2021)./#ITP #LeanProver #MahLib
- Normalization for Fitch-style modal calculi. ~ Nachiappan Valliappan , Fabian Ruch, Carlos Tomé Cortiñas. #ITP #Agda
- El lamento de un matemático. ~ Paul Lockhart. #Matemática #AI #MachineLearning #Math
- Discrete mathematics (An open introduction, 3rd edition). ~ Oscar Levin. #eBook #Math
- Why formalize mathematics? ~ Patrick Massot. #ITP #LeanProver #Math
- From World to Environment: Open AI Gym Primer. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming #AI
- Functional programming in Coq theorem prover: Lecture 2. ~ Mukesh Tiwari (@mukesh_tiwari). #ITP #Coq #FunctionalProgramming
- Demystifying the state monad. ~ Hugo Peters. #Haskell #FunctionalProgramming
- Using Coq to enforce the checks-effects-interactions pattern in DeepSEA smart contracts. ~ D. Britten, V. Sjöberg, S. Reeves. #ITP #Coq
- Formalization of dependent type theory: The example of CaTT. ~ Thibaut Benjamin. #ITP #Agda
- TacticToe: Learning to prove with tactics. ~ Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, Michael Norrish. #ITP #HOL4 #MachineLearning
- What’s that Typeclass: Foldable. ~ Alyona Antonova. #Haskell #FunctionalProgrammiang
- A 7 lecture Haskell Crash Course. #Haskell #FunctionalProgramming
- Muḥammad ibn Mūsā al-Khwārizmī. ~ Chris Simms. #Math #CompSci
- What is the point of computers? A question for pure mathematicians. ~ Kevin Buzzard. #ITP LeanProver #Math
- Formally verified derivation of an executable and terminating CEK machine from call-by-value calculus. ~ Wojciech Rozowski. #ITP #Agda
- Haskelling the Advent of Code 2021 - Day 0. #Haskell #FunctionalProgramming
- Haskelling the Advent of Code 2021 - Day 1. #Haskell #FunctionalProgramming
- Graspable math activities: Assign algebra tasks to your students and see live feedback of their step-by-step work. Discover, create, and share engaging math activities for 4th to 12th graders. #Math
- The HoTT Game. ~ Joseph Hua. #HoTT #ITP #Agda
- Assessing Haskell. ~ @nyeogmi. #Haskell #FunctionalProgramming
- Artificial intelligence aids intuition in mathematical discovery. ~ Christian Stump. #AI #Math
- Domain-specific languages and code synthesis using Haskell. ~ Andy Gill. #Haskell #FunctionalProgramming
- RankNTypes via lambda calculus. ~ Matt Parsons (@mattoflambda). #Haskell #FunctionalProgramming
- On relational compilation. ~ Clément Pit-Claudel (@cpitclaudel). #ITP #Coq
- See and believe: Visualizing with Gloss. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- A complete axiom system for 1-free Kleene star expressions under bisimilarity: An elementary proof. ~ Allan van Hulst. #ITP #Coq
- Coherence for monoidal and symmetric monoidal groupoids in Homotopy Type Theory. ~ Stefano Piceghello. #PhD_Thesis #ITP #Coq #HoTT
- Simple formally verified compiler in Lean. ~ Leo Okawa Ericson. #ITP #LeanProver
- Using Isabelle in two courses on logic and automated reasoning. ~ Jørgen Villadsen, Frederik Krogsdal Jacobsen. #ITP #IsabelleHOL #Logic #ATP
- [[http://lcs.ios.ac.cn/fm2021/recordings/fm_tea/Avigad.mp4][Teaching logic and mechanized reasoning with Lean 4 [Video]]]. ~ Jeremy Avigad. #ITP #LeanProver #Logic
- [[http://lcs.ios.ac.cn/fm2021/recordings/fm_tea/Tobias.mp4][Teaching algorithms and data structures with a proof assistant [Video]]]. ~ Tobias Nipkow. #ITP #IsabelleHOL #Algorithms
- SeCaV: A sequent calculus verifier in Isabelle/HOL. ~ AH From, FK Jacobsen, J Villadsen. #ITP #IsabelleHOL #Logic
- van Emde Boas trees (in Isabelle/HOL). ~ Thomas Ammer, Peter Lammich. #ITP #IsabelleHOL #Algorithms
- Exploring simplified variants of Gödel’s ontological argument in Isabelle/HOL. ~ Christoph Benzmüller. #ITP #IsabelleHOL
- Haskell series part 7 (This is the seventh article of a series on the functional language Haskell for beginners). ~ Pierre Guillemot (@hnb_02). #Haskell #FunctionalProgramming
- Automating public announcement logic and the wise men puzzle in Isabelle/HOL. ~ Christoph Benzmüller, Sebastian Reichie. #ITP #IsabelleHOL
- Factorization of polynomials with algebraic coefficients (in Isabelle/HOL). ~ Manuel Eberl, René Thiemann. #ITP #IsabelleHOL #Math
- From Kepler to Newton: the role of explainable AI in science discovery. ~ Zelong Li, Jianchao Ji, Yongfeng Zhang. #AI #XAI
- Formalization of bond graph using higher-order-logic theorem proving. ~ Ujala Qasim, Adnan Rashid, Osman Hasan. #ITP #HOL_Light
- Intuitionism and constructive logic. ~ Lawrence Paulson. #Logic #Math #ITP #Coq #Agda
- Entrevista com Leonardo de Moura (Microsoft Research). #ITP #LeanProver #CompSci
- Manual de edición científica por KSJ.
- KSJ Science Editing Handbook.
- Emacs is a lifestyle. ~ Bozhidar Batsov (@bbatsov). #Emacs
- Dijkstra’s most powerful lessons. ~ Eliran Turgema. #Dijkstra #CompSci
- Lean 4 Hackers. ~ J Kenneth King. #Lean4 #FunctionalProgramming
- AI revisited: Breaking down BFS. ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- Dedekind domains and class number in Lean. ~ Anne Baanen. #ITP #LeanProver #Math
- Functional programming in Coq theorem prover - Lecture 1. ~ Mukesh Tiwari (@mukesh_tiwari). #ITP #Coq #FunctionalProgramming
- An introduction to Lean 4, a functional programming language. ~ Adolfo Neto (@adolfont). #ITP #LeanProver #FunctionalProgramming
- Programming with tactics. ~ Reed Mullanix. #Haskell #FunctionalProgramming
- cryptolib: Security proofs in the Lean theorem prover. ~ Joey Lup. #MSc_Thesis #ITP #LeanProver
- ‘Amazing’ Math bridge extended beyond Fermat’s Last Theorem. ~ Erica Klarreich. #Math
- Modelling and proving safety in autonomous cars scenarios in HOL-CSP. ~ Burkhart Wolff, Safouan Taha. #ITP #IsabelleHOL
- Competitive programming in Haskell: BFS, part 4 (implementation via STUArray). ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Toward a quantum programming language for higher-level formal verification. ~ Finn Voichick, Michael Hicks. #ITP #Coq #QuantumProgramming
- Competitive programming in Haskell: Enumeration. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Solving linear algebra by program synthesis. ~ Iddo Drori, Nakul Verma. #AI #MachineLearning #Math
- A mechanized investigation of an axiomatic system for Minkowski spacetime. ~ Mathis Gerdes. #MSc_Thesis #ITP #IsabelleHOL
- A beginner’s guide to Haskell and its ecosystem. ~ Alejandro Serrano (@trupill).s#1 #Haskell #FunctionalProgramming
- A sequent calculus for first-order logic formalized in Isabelle/HOL. ~ Asta Halkjær From, Anders Schlichtkrull, Jørgen Villadsen. #ITP #IsabelleHOL #Logic
- Exploring Euler’s differentials of trigonometric functions in Isabelle using nonstandard analysis. ~ Alice Johansen. #ITP #IsabelleHOL #Math
- Verified quadratic virtual substitution for real arithmetic. ~ Matias Scharager, Katherine Cordwell, Stefan Mitsch, André Platzer. #ITP #IsabelleHOL #Logic #Math
- An experiment: The Cauchy–Schwarz inequality. ~ Lawrence Paulson. #ITP #IsabelleHOL #Math
- Verified optimization. ~ Alexander Bentkamp, Jeremy Avigad. #ITP #LeanProver #Math
- Verified decision procedures for modal logics. ~ Minchao Wu, Rajeev Goré. #ITP #LeanProver #Logic
- Automating public announcement logic and the wise men puzzle in Isabelle/HOL. ~ Christoph Benzmüller, Sebastian Reiche. #ITP #IsabelleHOL
- Factorization of polynomials with algebraic coefficients (in Isabelle/HOL). ~ Manuel Eberl, René Thiemann. #ITP #IsabelleHOL #Math
- Conditional independence in functional probabilistic programming. ~ Wink van Zon. #MSc_Thesis #Haskell #FunctionalProgramming
- The axiom of choice and descriptions. ~ Lawrence Paulson. #Logic #Math #IsabelleHOL
- Answer set programming made easy. ~ Jorge Fandinno, Seemran Mishra, Javier Romero, Torsten Schaub. #LogicProgramming #ASP
- Should Type Theory replace Set Theory as the foundation of Mathematics? ~ Thorsten Altenkirch. #Logic #Math #TypeTheory #SetTheory
- Towards tractable mathematical reasoning: Challenges, strategies, and opportunities for solving math word problems. ~ Keyur Faldu, Amit Sheth, Prashant Kikani, Manas Gaur, Aditi Avasthi. #AI #Math #MachineLearning
- Real exponents as the limits of sequences of rational exponents (in Isabelle/HOL). ~ Jacques D. Fleuriot. #ITP #IsabelleHOL #Math
- Löb and möb: strange loops in Haskell. ~ David Luposchainsky (@quch3n). #Haskell #FunctionalProgramming
- Szemerédi’s regularity lemma (in Isabelle/HOL). ~ Chelsea Edmonds, Angeliki Koutsoukou-Argyraki, Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Formalization in Lean of IMO 1994 Q1. ~ Antoine Labelle. #ITP #LeanProver #Math #IMO
- The principles of deep learning theory (An effective theory approach to understanding neural networks). ~ Daniel A. Roberts, Sho Yaida, Boris Hanin. #eBook #DeepLearning #NeuralNetwork #AI #Math
- Coffee corner: are deep learning’s returns diminishing?. #DeepLearning #AI
- A Coq formalization of abstract algebra using a functional programming style. ~ Larry Darryl Lee Jr. #ITP #Coq #Math
- Formalization of some elementary mathematical theories in Coq. ~ Evgeny Ivashkevich. #ITP #Coq #Math
- A course on formal verification at CS Club. ~ Anton Trunov (@falsenov). #ITP #Coq #MathComp #SSReflect
- Programs and proofs (Mechanizing mathematics with dependent types). ~ Ilya Sergey (@ilyasergey). #ITP #Coq #MathComp #SSReflect #Math
- Coq Winter School 2018-2019 (SSReflect & MathComp). ~ Yves Bertot, Cyril Cohen, Laurence Rideau, Enrico Tassi and Laurent Thery. #ITP #Coq #MathComp #SSReflect
- 1001 representations of syntax with binding. ~ Jesper Cockx (@agdakx). #ITP #Agda
- This month in mathlib (Oct 2021). #ITP #LeanProver #MathLib #Math
- A formalization of Kolmogorov complexity in synthetic computability theory. ~ Nils Lauermann. #BSc_Thesis #ITP #Coq #CompSci
- Modular specification and compositional soundness of abstract interpreters. ~ Sven Keidel. #PhD_Thesis #Haskell #FunctionalProgramming
- Conflict resolution for data updates by multiple bidirectional transformations. ~ Mikiya Habu, Soichiro Hidaka. #ITP #Coq
- Predicate transformer semantics for hybrid systems (Verification components for Isabelle/HOL). ~ Jonathan Julián Huerta y Munive, Georg Struth. #ITP #IsabelleHOL
- 7 useful tools written in Haskell. ~ Nikolay Rulev. #Haskell #FunctionalProgramming
- Sturdy: a library for developing sound static analyses in Haskell. ~ Sven Keidel. #Haskell #FunctionalProgramming
- It is declarative (On declarative programming in Prolog). ~ Włodzimierz Drabent. #Prolog #LogicProgramming
- It is declarative (On declarative programming in Prolog) 2nd part. ~ Włodzimierz Drabent. #Prolog #LogicProgramming
- Hydras & Co.: Formalized mathematics in Coq for inspiration and entertainment. ~ Pierre Castéran, Jérémy Damour, Karl Palmskog, Clément Pit-Claudel, Théo Zimmermann. #ITP #Coq #Math
- Hydras, Ordinals & Co. A library in Coq of entertaining formal mathematics. ~ Pierre Castéran. #ITP #Coq #Math
- Contributions to mathlib from LTE about normed groups. ~ Riccardo Brasca. #ITP #LeanProver #Math
- Challenges in the collaborative evolution of a proof language and its ecosystem. ~ Théo Zimmermann. #PhDThesis #ITP #Coq
- Can mathematics be done by machine? I. ~ Michael Harris. #ITP #Math #AI
- Avances en la resolución de los problemas diofánticos. ~ Rachel Crowell. #Matemáticas
- NG de Bruijn and AUTOMATH. ~ Lawrence Paulson @Cambridge_CL #ITP #AutoMath #Math
- Getting started with OCaml in 2021. ~ Tim McGilchrist. #OCaml #FunctionalProgramming
- Mathematical components. ~ Assia Mahboubi, Enrico Tassi. #ITP #Coq #Math
- Lean versus Coq: The cultural chasm. ~ Ramkumar Ramachandra (@artagnon). #ITP #LeanProver #Coq #Logic #Math
- Design of quantum optical experiments with logic artificial intelligence. ~ Alba Cervera-Lierta, Mario Krenn, Alan Aspuru-Guzik. #AI #Logic #SAT #QuantumPhysics
- Structures algébriques fondamentales. ~ Patrick Massot. #Math
- Coq exercises for beginners. ~ Ömer Sinan Ağacan. #ITP #Coq #Math
- Packaging mathematical structures. ~ François Garillot, Georges Gonthier, Assia Mahboubi, Laurence Rideau. #ITP #Coq #Math
- Type classes for mathematics in type theory. ~ Bas Spitters, Eelis van der Weegen.3# #ITP #Coq #Math
- Group theory in Lean. ~ Mitchell Rowet. #ITP #LeanProver #Math
- X86 instruction semantics and basic block symbolic execution (in Isabelle/HOL). ~ Freek Verbeek, Abhijith Bharadwaj, Joshua Bockenek, Ian Roessle, Timmy Weerwag, Binoy Ravindran. #ITP #IsabelleHOL
- A formal verification of reversible primitive permutations. ~ Giacomo Maletto. #BSc_Thesis #ITP #LeanProver #Logic #Math
- #SEP: Natural deduction systems in logic. ~ Francis Jeffry Pelletier, Allen Hazen. #Logic
- Modelling puzzles in first order logic ~ Adrian Groza. #ATP #Prover9
- Competitive programming in Haskell: BFS, part 3 (implementation via HashMap). ~ Brent Yorgey. #Haskell #FunctionalProgramming
- AI has cracked a key mathematical puzzle for understanding our world. ~ Karen Hao. #AI #MachineLearning #Math
- Formalization in Lean of IMO 2021 Q1. ~ Mantas Bakšys. #ITP #LeanProver #Math #IMO
- Demostración asistida por ordenador. ~ Jesús María Aransay Azofra, César Domínguez Pérez. #DAO #IsabelleHOL #Matemáticas
- Tutorial to locales and locale interpretation. ~ Clemens Ballarin. #ITP #IsabelleHOL #Math
- Haskell-style type classes with Isabelle/Isar. ~ Florian Haftmann. #ITP #IsabelleHOL
- Mathematical Logic, Lecture 14 (Presburger arithmetic). ~ Artem Chernikov (@archernikov). #Logic #Math
- Why explain mathematics to computers? ~ Patrick Massot. #ITP #LeanProver #Math
- Irrationality and transcendence criteria for infinite series in Isabelle/HOL. ~ Angeliki Koutsoukou-Argyraki, Wenda Li, Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- On proving lists infinite. ~ Li-yao Xia (@lysxia). #ITP #Coq
- Mathematical Logic, Lecture 12 (Quantifier elimination). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 13 (Quantifier elimination in algebraically closed fields). ~ Artem Chernikov (@archernikov). #Logic #Math
- Technical perspective: On proofs, entanglement, and games. ~ Dorit Aharonov, Michael Chapman. #CompSci
- Monad transformers – Part 1: An introduction. ~ @rezigned. #Haskell #FunctionalProgramming
- Quantum physics in Lean. ~ Mario Krenn (@MarioKrenn6240). #ITP #LeanProver #Physics
- On logical formalisms. ~ Lawrence Paulson. #Logic #ITP
- Integrating automated theorem provers in proof assistants. ~ Yacine El Haddad. #PhDThesis #ITP #ATP
- Belief revision theory (in Isabelle/HOL). ~ Valentin Fouillard, Safouan Taha, Frédéric Boulanger, Nicolas Sabouret. #ITP #IsabelleHOL
- Proof complexity of modal resolution. ~ Sarah Sigley, Olaf Beyersdorff. #ATP #Logic #Automated_reasoning
- A formalisation of abstract argumentation in higher-order logic. ~ Alexander Steen, David Fuenmayor. #ITP #IsabelleHOL
- Towards an accessible mathematics working environment in education. ~ K Miesenberger, W Neuper, B Stöger, M Wenzel. #ITP #IsabelleHOL #Math
- Make Isabelle accessible!. ~ R. Koutny, K. Miesenberger, W. Neuper, B. Stöger. #ITP #IsabelleHOL
- From conduit to streamly. ~ Julian Ospald. #Haskell #FunctionalProgramming
- Learn from errors: Overlapping instances. ~ Sandeep Chandrika. #Haskell #FunctionalProgramming
- Mathematical Logic, Lecture 11 (Upward Löwenheim-Skolem and expansions by definition). ~ Artem Chernikov (@archernikov). #Logic #Math
- Algebras for iteration, infinite executions and correctness of sequential computations. ~ Walter Guttmann. #ITP #IsabelleHOL
- Verified quadratic virtual substitution for real arithmetic. ~ Matias Scharager, Katherine Cordwell, Stefan Mitsch, André Platzer. #ITP #IsabelleHOL #Math
- Emacs as a tool for modern science. ~ Timothy Johnson. #Emacs #OrgMode
- Introductory example: Fibonacci numbers (in Isabelle/HOL). ~ Lawrence Paulson @Cambridge_CL #ITP #IsabelleHOL #Math
- More on Fibonacci numbers, with equational reasoning (in Isabelle/HOL). ~ Lawrence Paulson @Cambridge_CL #ITP #IsabelleHOL #Math
- Formalizing ordinal partition relations using Isabelle/HOL. ~ Mirna Džamonja, Angeliki Koutsoukou-Argyraki, Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- Induction without core-size blow-up a.k.a. Large records: anonymous edition. ~ Edsko de Vries, Adam Gundry. #Haskell #FunctionalProgramming
- Proving commutativity of polysemy interpreters. ~ Sandy Maguire. #Haskell #FunctionalProgramming
- Type-checking plugins, Part I: Why write a type-checking plugin?. ~ Sam Derbyshire. #Haskell #FunctionalProgramming
- Custom type errors using TypeError. ~ Richard Eisenberg (@RaeHaskell). #Haskell #FunctionalProgramming
- Co-Applicative programming style. ~ Gabriella Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- Using program synthesis and inductive logic programming to solve Bongard problems. ~ Atharv Sonwane, Sharad Chitlangia, Tirtharaj Dash, Lovekesh Vig, Gautam Shroff, Ashwin Srinivasan. #MachineLearning #ILP
- Initial and final encodings of free monads. ~ Li-yao Xia (@lysxia). #Haskell #FunctionalProgramming #ITP #Coq
- The graphs game, version 0.1. ~ Barrie Cooper. #ITP #LeanProver #Math
- Mathematical Logic, Lecture 10 (Axiomatizability and the diagram method). ~ Artem Chernikov (@archernikov). #Logic #Math
- TrieMap that match (a programming pearl). ~ Simon Peyton Jones. #Haskell #FunctionalProgramming
- Competitive programming in Haskell: BFS, part 2 (alternative APIs). ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Is the twin prime conjecture independent of Peano Arithmetic? ~ Alessandro Berarducci, Antongiulio Fornasiero. #Logic #Math
- Teaching notes, slides, & handouts. ~ Colin McLear (@mclearc). #Emacs #OrgMode
- Efficient extensional binary tries. ~ Andrew Appel, Xavier Leroy. #ITP #Coq
- Toward SMT-based refinement types in Agda. ~ Gan Shen, Lindsey Kuper. #ITP #Agda #FunctionalProgramming
- Toward hole-driven development with Liquid Haskell. ~ Patrick Redmond, Gan Shen, Lindsey Kuper. #Haskell #LiquidHaskell #FunctionalProgramming
- Template Haskell — Use cases. #Haskell #FunctionalProgramming
- Naive descriptive set theory. ~ M. Foreman. #SetTheory
- Mathematical Logic, Lecture 1 (First-order logic: languages, structures and formulas). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 2 (Semantics of first-order formulas). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 3 (Substitution of terms into formulas). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 4 (Universally valid formulas and propositional calculus). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 5 (Formal proofs). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 6 (More on formal proofs and Gödel’s completeness theorem). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 7 (Proof of Gödel’s completeness theorem). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 8 (Finishing the proof of Gödel’s completeness theorem). ~ Artem Chernikov (@archernikov). #Logic #Math
- Mathematical Logic, Lecture 9 (Model theory: compactness, Löwenheim-Skolem, elementary substructure). ~ Artem Chernikov (@archernikov). #Logic #Math
- UCLA Math 220A, Mathematical Logic.~ Artem Chernikov (@archernikov). #Logic #Math
- Haskell Lenses From Scratch. #Haskell #FunctionalProgramming
- Correct by construction language implementations. ~ Arjen Rouvoet (@ArjenRouvoet). #PhD_Thesis #ITP #Agda #FunctionalProgramming via @PerezJorgeA_
- Verification for dummies: SMT and induction. ~ Adrien Champion. #eBook #Logic #SMT #FormalVerification
- OCaml Programming: Correct + Efficient + Beautiful. ~ Michael R. Clarkson et als. #eBook #OCaml #FunctionalProgramming
- Un parser en una docena de lineas en Haskell. ~ Alejandro Serrano (@trupill). #Haskell #FunctionalProgramming
- New year, new teaching material. ~ Kevin Buzzard. #ITP #LeanProver #Math
- Competitive programming in Haskell: BFS, part 1. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Denotational homomorphic testing. ~ Divesh Otwani. #Haskell #FunctionalProgramming
- La conjetura diabólica. ~ Juan Arias de Reyna. #Matemáticas
- Advice for aspiring bloggers. ~ Gabriella Gonzalez (@GabrielG439). #Blogs
- Proving correctness of a Chez Scheme compiler pass. ~ Ian Atol. #MSc_Thesis #ITP #Coq
- Introduction to University Mathematics 2021: Logic in Lean, video 3 (and, or, iff). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- Proof theory, proof search, and logic programming. ~ Dale Miller. #eBook #Logic #LogicProgramming
- Experiences from exporting major proof assistant libraries. ~ Michael Kohlhase, Florian Rabe. #ITP #HOL_Light #Coq #IsabelleHOL #IMPS #PVS #Mizar
- When Alan Turing and Ludwig Wittgenstein discussed the liar paradox. ~ Paul Austin Murphy. #Logic #Math
- copy-as-org-mode: A Firefox Add-on (WebExtension) to copy selected web page into Org-mode formatted text!. #Emacs #OrgMode #Firefox
- Haskelling in Hackerrank!!: Episode 1: Competitive coding. #Haskell #FunctionalProgramming
- Haskelling in Hackerrank!!: Episode 2: Mini-Max Sum. #Haskell #FunctionalProgramming
- Logic programming for XAI: A technical perspective. ~ Laura State. #LogicProgramming #AI #XAI
- Kernels and small quasi-kernels in digraphs. ~ Allan van Hulst. #ITP #Coq #Math
- Mechanizing second-order logic in Coq. ~ Mark Koch. #BSc_Thesis #ITP #Coq #Logic #Math
- Formalizing geometric algebra in Lean. ~ Eric Wieser, Utensil Song. #ITP #LeanProver #Math
- Introduction to University Mathematics 2021: Logic in Lean, video 2 (true, false, not). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Logic #Math
- Tuple Prelude. ~ Mitchell Vitez. #Haskell #FunctionalProgramming
- An overview of functional reactive programming. ~ F. Kockelke. #FunctionalProgramming #Haskell
- Soundness and completeness of an axiomatic system for first-order logic (in Isabelle/HOL). ~ Asta Halkjær From. #ITP #IsabelleHOL #Logic #Math
- Learning to reason. ~ Fredrik Rømming. #Logic #ATP #MachineLearning
- Logic in Lean, video 1. ~ Kevin Buzzard. #ITP #LeanProver #Logic
- Mathlib statistics. #ITP #LeanProver #Math
- Isabelle’s AFP statistics. #ITP #IsabelleHOL #Math
- This month in mathlib (Sep 2021). ~ Mathlib community. #ITP #LeanProver #Math
- Testing the Red-Black tree implementation of the Linux kernel against a formally verified variant. ~ Mete Polat. #ITP #IsabelleHOL
- Verified Lustre normalization with node subsampling. ~ Timothy Bourke, Paul Jeanmaire, Basile Pesin, Marc Pouzet. #ITP #Coq
- A verified online monitor for metric temporal logic with quantitative semantics. ~ Agnishom Chattopadhyay. #ITP #Coq
- How to market Haskell to a mainstream programmer. ~ Gabriella Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- Nested strict data in Haskell. ~ Tom Ellis. #Haskell #FunctionalProgramming
- Specification and verification of a transient stack. ~ A. Moine, A. Charguéraud, F. Pottier. #ITP #Coq
- A verified algebraic representation of Cairo program execution. ~ Jeremy Avigad, Lior Goldberg, David Levit, Yoav Seginer, Alon Titleman. #ITP #LeanProver
- Meta-metaprogramming. ~ James Koppel. #PhD_Thesis #Haskell #FunctionalProgramming
- Structures algébriques fondamentales (Définitions, constructions et propriétés universelles). ~ Patrick Massot. #eBook #Math
- A new medium for communicating research on programming languages. ~ Will Crichton. #CompSci
- Can you make heterogeneous lists in Haskell? Sure — as long your intent is clear. ~ Laurent P. René de Cotret. #Haskell #FunctionalProgramming
- Using lens to set a value based on another. ~ Magnus Therning. #Haskell #FunctionalProgramming
- A short overview of typed template Haskell. ~ Heitor Toledo Lassarote de Paula. #Haskell #FunctionalProgramming
- Not another computer algebra system: Highlighting wxMaxima in calculus. ~ N. Karjanto, H. S. Husain. #CAS #Math
- Automated, efficient, and sound verification of integer multipliers. ~ Mertcan Temel. #PhD_Thesis #ITP #ACL2
- Making LLVM GEP safer in Haskell. ~ Luc Tielen (@luctielen). #Haskell #FunctionalProgramming
- Abstraction, reasoning and deep learning: A Study of the “Look and Say” sequence. ~ Wlodek W. Zadrozny. #AI #MachineLearning #Math
- Use Emacs for systems thinking. ~ Junji Zhi. #Emacs #OrgMode
- The Radon-Nikodym theorem in Lean. ~ Kexing Ying. #ITP #LeanProver #Math
- A formalization of weighted path orders and recursive path orders (in Isabelle/HOL). ~ Christian Sternagel, René Thiemann. #ITP #IsabelleHOL
- Category theory ilustrated: Logic. ~ Boris Marinov (@AlexanderKatt). #CategoryTheory #Logic #Math
- What the industrial coder misses. ~ Zoltán Tóth. #eBook #Haskell #FunctionalProgramming
- Big missing undergraduate theorems (in Lean mathlib). ~ Patrick Massot. #ITP #LeanProver #Math
- A certified library of ordinal arithmetic. ~ Nicolai Kraus, Fredrik Nordvall Forsberg, Chuangjie Xu. #ITP #Agda #Logic #Math #SetTheory
- How AI can be surprisingly dangerous for the philosophy of mathematics and of science. ~ Walter Carnielli. #AI #MachineLearning #Math #ITP
- A functional quantum programming language. ~ Matilda Blomqvist et als. #Haskell #FunctionalProgramming
- Beyond the tactic-state automaton. ~ Daniel Selsam. #ITP #LeanProver #MachineLearning
- Presentation by Jeremy Avigad at the opening of the Hoskinson Center for Formal Mathematics at CMU. ~ Jeremy Avigad. #ITP #LeanProver #Math
- Conflict-driven satisfiability for theory combination: Lemmas, modules, and proofs. ~ Maria Paola Bonacina, Stéphane Graham-Lengrand, Natarajan Shankar. #ATP #Logic
- Lambda calculus - Step by step. ~ Helmut Brandl. #LambdaCalculus
- A new programming game, Swarm. ~ Brent Yorgey. #Haskell #FunctionalProgramming #Game
- Swarm: a 2D programming and resource gathering game. ~ Brent Yorgey. #Haskell #FunctionalProgramming #Game
- Functional data pipelines with funflow2. ~ Dorran Howell, Guillaume Desforges, Vince Reuter. #Haskell #FunctionalProgramming #DataScience
- The promise of formal mathematics. ~ Jeremy Avigad. #ITP #LeanProver #Math
- Voting theory in the Lean theorem prover. ~ Wesley H. Holliday, Chase Norman, Eric Pacuit. #ITP #LeanProver #Math
- Much ADO about failures: A fault-aware model for compositional verification of strongly consistent distributed systems. ~ W. Honoré, J. Kim, J.Y. Shin, Z. Shao. #ITP #Coq
- Introducción a la programación funcional usando Haskell y Agda. ~ Camilo Chacón Sartori (@camilo_chacon_s). #ProgramaciónFuncional #Haskell #Agda
- Introduction to neural network verification. ~ Aws Albarghouthi. #eBook #NeuralNetwork #MachineLearning #Logic
- Trustworthy AI. ~ Jeannette M. Wing. #AI #FormalMethods
- AI futures: Fact and fantasy. ~ Devdatt Dubhashi. #AI
- La inteligencia artificial y la solución de problemas. ~ Juan Arias de Reyna. #IA #Matemáticas
- Online course on Category theory: 4. Adjoint functors. ~ Richard E. Borcherds. #CategoryTheory
- VideoArxiv: a searchable repository of links to math videos. #Math
- There was no formal methods winter. ~ Hillel Wayne (@hillelogram). #FormalMethods via @LogicPractice
- Connecting constructive notions of ordinals in homotopy type theory. ~ Nicolai Kraus, Fredrik Nordvall Forsberg, Chuangjie Xu. #ITP #Agda #Logic #Math #HoTT
- Competitive programming in Haskell: Codeforces Educational Round 114. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Symmetry. ~ Marc Bezem, Ulrik Buchholtz, Pierre Cagne, Bjørn Ian Dundas, Daniel R. Grayson. #eBook #Univalent_mathematics
- Primos que generan primos: el teorema de Scherk. ~ M.A. Morales (@gaussianos). #Matemáticas
- Online course on Category theory: 1. Introduction. ~ Richard E. Borcherds. #CategoryTheory
- Online course on Category theory: 2. Functors. ~ Richard E. Borcherds. #CategoryTheory
- Online course on Category theory: 3. Natural transformations. ~ Richard E. Borcherds. #CategoryTheory
- The Lean 4 theorem prover and programming language (System description). ~ Leonardo de Moura, Sebastian Ullrich. #ITP #LeanProver
- Continuous partitions of unity (in Lean). ~ Patrick Massot. #ITP #LeanProver #Math
- Verifying AVL trees in Lean. ~ Sofia Konovalova. #ITP #LeanProver #Algorithms
- Type theory by example. ~ Carl Joshua Quines. #TypeTheory #Logic #CompSci
- Closed-expression of a sum with proof in Coq. ~ Boro Sitnikovski (@BSitnikovski). #ITP #Coq #Math
- Verified optimization (work in progress). ~ Alexander Bentkamp, Jeremy Avigad.f#ITP #LeanProver #Math
- Complex bounded operators in Isabelle/HOL. ~ José Manuel Rodríguez Caballero, Dominique Unruh. #ITP #IsabelleHOL #Math
- Learning Haskell by building a static blog generator. ~ Gil Mizrahi (@_gilmi). #eBook #Haskell #FunctionalProgramming
- Automatically updated, cached views with lens. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Proof editor for natural deduction. ~ Freddy Abrahamsson, Therese Andersson, Axel Forsman, Lo Ranta, Michael Åkesson. #BSc_Thesis #Logic #PureScript #FunctionalProgramming
- Natural deduction proof editor and checker. #Logic #PureScript #FunctionalProgramming
- Existence of Nash equilibria in 2-player simultaneous games and priority games proven in Isabelle. ~ S Le Roux, É Martin-Dorel, JG Smaus. #ITP #IsabelleHOL #Math
- Formalized soundness and completeness of epistemic logic. ~ AH From, AB Jensen, J Villadsen. #ITP #IsabelleHOL #Logic
- GHC rewrite rules. ~ Jonathan Dowland. #Haskell #FunctionalProgramming
- Haskell series part 4 (This is the fourth article of a series on the functional language Haskell for beginners). ~ Pierre Guillemot. #Haskell #FunctionalProgramming
- Distributed knowledge proofs in the Coq proof assistant. ~ Michiel Philipse #BSc_Thesis #ITP #Coq
- Univalent Mathematics: This Coq library aims to formalize a substantial body of mathematics using the univalent point of view. #ITP #Coq #Math
- Infinity category theory offers a bird’s-eye view of mathematics. ~ Emily Riehl. #Math #CategoryTheory
- Unprovability in mathematics: A first course on ordinal analysis. ~ Anton Freund. #Logic #Math
- LISA: Language models of ISAbelle proofs. ~ Albert Q. Jiang, Wenda Li, Jesse M. Han, Yuhuai Wu. #ITP #IsabelleHOL
- Category theory for ZFC in HOL I: Foundations: Design patterns, set theory, digraphs, semicategories. #ITP #IsabelleHOL #Math
- Category theory for ZFC in HOL II: Elementary theory of 1-categories. #ITP #IsabelleHOL #Math
- Category theory for ZFC in HOL III: Universal constructions. #ITP #IsabelleHOL #Math
- Extension of types-to-sets. #ITP #IsabelleHOL #Math
- IDE: Introduction, destruction, elimination. #ITP #IsabelleHOL #Math
- Conditional transfer rule. #ITP #IsabelleHOL #Math
- Conditional simplification. #ITP #IsabelleHOL #Math
- Como está hecho este blog. #Emacs #OrgMode
- My experience with book writing. ~ Marcin Borkowski (@marcin_mbork). #Emacs #OrgMode #Elisp
- Modelling and verifying dynamic properties of neuronal networks in Coq. ~ Abdorrahim Bahrami. #PhDThesis #ITP #Coq #NeuralNetwork
- Penrose kite and dart tilings with Haskell Diagrams. ~ Chris Reade. #Haskell #FunctionalProgramming #Math
- Mining counterexamples for wide-signature algebras with an Isabelle server. ~ Boris Shminke, Wesley Fussner. #ITP #IsabelleHOL
- Symbolic computation in software science: My personal view. ~ Bruno Buchberger. #CompSci
- Proceedings 18th International Conference on Quantum Physics and Logic. #Logic #Math #Physics
- Hasse derivative of polynomials (in Lean).~ Johan Commelin. #ITP #LeanProver #Math
- Taylor expansions of polynomials (in Lean). ~ Johan Commelin. #ITP #LeanProver #Math
- A survey of practical formal methods for security. ~ Tomas Kulik et als. #FormalMethods
- Distilling the requirements of Gödel’s incompleteness theorems with a proof assistant. ~ Andrei Popescu, Dmitriy Traytel. #ITP #IsabelleHOL #Logic #Math
- GSOL: A confluence checker for Haskell rewrite rules. ~ Yao Faustin Date Makoto Hamana. #Haskell #FunctionalProgramming
- Announcing Evoke, a GHC plugin for deriving type class instances quickly. ~ Taylor Fausak (@taylorfausak). #Haskell #FunctionalProgramming
- Deferred derivation. ~ Matt Parsons (@mattoflambda). #Haskell #FunctionalProgramming
- Symbolic computation and Common Lisp. ~ Neil T. Dantam. #CommonLisp
- New math book rescues landmark topology proof. ~ Kevin Hartnett (@KSHartnett). #Math
- Implementing Hindley-Milner with the unification-fd library. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- An introduction to type level programming. ~ Rebecca Skinner. #Haskell #FunctionalProgramming
- Optics for the working mathematician. ~ Bartosz Milewski (@BartoszMilewski). #CategoryTheory
- Leibniz coercion. ~ Oleg Grenrus (@phadej). #Haskell #FunctionalProgramming
- Learned provability likelihood for tactical search. ~ Thibault Gauthier. #ITP #HOL4 #MachineLearning
- Conjectures, tests and proofs: An overview of theory exploration. ~ Moa Johansson, Nicholas Smallbone. #Haskell #FunctionalProgramming
- Vinyl-style extensible graphs. ~ Daniel Firth. #Haskell #FunctionalProgramming
- Optics are monoids. ~ Gabriella Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- Competitive programming in Haskell: Kadane’s algorithm. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Leibniz equality in Haskell, part 2: heterogeneous equality. ~ Ryan Scott. #Haskell #FunctionalProgramming
- Cayley representation of … monads? ~ Konrad Kleczkowski. #Haskell #FunctionalProgramming
- A data flow analysis algorithm for computing dominators (in Isabelle/HOL). ~ Nan Jiang. #ITP #IsabelleHOL
- Inductive and coinductive predicate liftings for effectful programs. ~ Niccolò Veltri, Niels Voorneveld. #ITP #Agda
- Mutating lenses. ~ Tarmean. #Haskell #FunctionalProgramming
- How dependent Haskell can improve industry projects. ~ Danya Rogozin, Vladislav Zavialov. #Haskell #FunctionalProgramming
- Two mechanisations of WebAssembly 1.0. ~ Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, Philippa Gardner. #ITP #IsabelleHOL #Coq
- A reasoning engine for the gamification of loop-invariant discovery. ~ Andrew Walter, Seth Cooper, Panagiotis Manolios. #ATP #ACL2 #Program_verification
- Course: Logic Programming (2020-2021). ~ Manuel Hermenegildo et als. #LogicProgramming #Prolog
- Schutz’ independent axioms for Minkowski spacetime (in Isabelle/HOL). Richard Schmoetten, Jake Palmer, Jacques Fleuriot. #ITP #IsabelleHOL #Math
- Vandermonde’s identity (in Lean). ~ Johan Commelin. #ITP #LeanProver #Math
- A survey of the proof-theoretic foundations of logic programming. ~ Dale Miller. #LogicProgramming
- Creating Haskell notebooks with org-mode. ~ Laura Viglioni (@LauraViglioni). #Emacs #OrgMode #Haskell #FunctionalProgramming
- Embedded pattern matching. ~ Trevor L. McDonell, Joshua D. Meredith, Gabriele Keller. #Haskell #FuncionalProgramming
- On the role of automated proof-assistants in the formalization of upper ontologies. ~ João R. M. Nicola, Giancarlo Guizzardi. #ITP #IsabelleHOL
- Programming with proofs. ~ Thorsten Altenkirch. #ITP #Agda #FunctionalProgramming
- The design of mathematical language. ~ Jeremy Avigad. #Logic #Math
- Parsing layout, or: Haskell’s syntax is a mess. ~ Abigail (@plt_abbie). #Haskell #FunctionalProgramming
- Why fintech companies use Haskell. ~ Roman Alterman. #Haskell #FunctionalProgramming
- Dependent optics. ~ Bartosz Milewski (@BartoszMilewski). #FunctionalProgramming #CategoryTheory
- Solving cubic and quartic equations (in Isabelle/HOL). ~ René Thiemann. #ITP #IsabelleHOL #Math
- Family values. ~ Matt Parsons (@mattoflambda). #Haskell #FunctionalProgramming
- A mechanized proof of the max-flow min-cut theorem for countable networks with applications to probability theory. ~ Andreas Lochbihler. #ITP #IsabelleHOL #Math
- Inverse function theorem. Part I. ~ K. Nakasho, Y. Futa. #ITP #Mizar #Math
- Elementary number theory problems. Part II. ~ A. Korniłowicz, D. Surowik. #ITP #Mizar #Math
- Derivation of commutative rings and the Leibniz formula for power of derivation. ~ Y. Watase, S. Matsunoki. #ITP #Mizar #Math
- Algebraic extensions. ~ C. Schwarzweller, A. Rowińska-Schwarzweller. #ITP #Mizar #Mat #ITP #Mizar #Math
- Miscellaneous graph preliminaries. Part I. ~ S. Koch. #ITP #Mizar #Math
- MiniF2F: a cross-system benchmark for formal Olympiad-level mathematics. ~ Kunhao Zheng, Jesse Michael Han, Stanislas Polu. #ITP #LeanProver #IsabelleHOL #Metamath #Math
- Theorem proving in Lean 4. #ITP #LeanProver
- From Euclid to Hilbert to Lean. ~ Tianchen Zhao. #ITP #LeanProver #Math
- Formalising nilpotent groups in Lean. ~ Ines Wright. #ITP #LeanProver #Math
- Formalising the fundamental group. ~ Shing Tak Lam. #ITP #LeanProver #Math
- Proving Dedekind’s Theorem in Lean. ~ Paul Lezeau. #ITP #LeanProver #Math
- Formalizing Thomae’s function in Lean. ~ Frick Hazard. #ITP #LeanProver #Math
- Ax-Grothendieck theorem in Lean. ~ Joseph Hua. #ITP #LeanProver #Math
- Conformal maps, Liouville’s theorem and random stuffs in Lean. ~ Yourong Zang. #ITP #LeanProver #Math
- Probability in Lean: a new begnining. ~ Kexing Ying. #ITP #LeanProver #Math
- Combinatorial design theory in Isabelle/HOL. ~ Chelsea Edmonds, Lawrence Paulson. #ITP #IsabelleHOL
- Formally verified defensive programming (efficient Coq-verified computations from untrusted ML oracles). ~ Sylvain Boulmé. #ITP #Coq #OCaml #FunctionalProgramming
- The theorem of three circles (in Isabelle/HOL). ~ Fox Thomson, Wenda Li #ITP #IsabelleHOL #Math
- Dependency analysis of Haskell declarations. ~ Artem Kuznetsov. #Haskell #FunctionalProgramming
- New Software Foundations release. ~ Benjamin C. Pierce et als. #ITP #Coq
- Modal logic S5 satisfiability in answer set programming. ~ Mario Alviano,a Sotiris Batsakis, George Baryannis. #Logic #ASP #LogicProgramming
- The Dao of Functional Programming (Last updated: August 30, 2021). ~ Bartosz Milewski (@BartoszMilewski). #Haskell #FunctionalProgramming #CategoryTheory
- HIW (The Haskell Implementors’ Workshop) 2021 videos. #Haskell #FunctionalProgramming
- A data-centered user study for proof assistant tools. ~ Hanneli C.A. Tavante. #ITP #Coq#LeanProver
- Latent effects for reusable language components: Extended version. ~ Birthe van den Berg, Tom Schrijvers, Casper Bach-Poulsen, Nicolas Wu. #Haskell #FunctionalProgramming
- Formalising algebraic effects with non-recoverable failure. ~ Timotej Tomandl, Dominic Orchard. #Haskell #FunctionalProgramming
- Sound and automated verification of real-world RTL multipliers. ~ Mertcan Temel, Warren A. Hunt Jr. #ITP #ACL2
- Computer algebra in Julia. ~ Dmitry S. Kulyabov, Anna V. Korolkova. #CAS #JuliaLang #Math
- Dijkstra: O homem que tornou a computação uma ciência. ~ Adriano Santos (@adrianolcp). #CompSci
- What is category theory and why is it trendy? ~ Katerina Hristova. #Math #CategoryTheory
- Geometry in Lean, a report for mathematicians. ~ Nicolò Cavalleri, Anthony Bordg. #ITP #LeanProver #Math
- Formalizing the Gromov-Hausdorff space. ~ Sébastien Gouëzel. #ITP #LeanProver #Math
- Leibniz equality in Haskell, part 1. ~ Ryan Scott. #Haskell #FunctionalProgramming
- Magical Haskell (modern functional programming and type theory in a fun and accessible way). ~ Anton Antich (@aantich). #Haskell #FunctionalProgramming #eBook
- Nascent GHC proposal: Source rewrite rules and optional constraints. ~ Chris Smith (@cdsmithus). #Haskell #FunctionalProgramming
- Life as a logician (An interview with Martin Davis by Allyn Jackson). #Logic #Math #CompSci #AI #MachineLearning
- Une idée assez folle, l’Intelligence Artificielle … (un film sur le parcours d’Alain Colmerauer). #AI #LogicProgramming #Prolog
- Towards formalising Schutz’ axioms for Minkowski spacetime in Isabelle/HOL. ~ Richard Schmoetten, Jake E. Palmer, Jacques D. Fleuriot. #ITP #IsabelleHOL #Math
- Scalar actions in Lean’s mathlib. ~ Eric Wieser. #ITP #LeanProver #Math
- AI ethics: A call to faculty. ~ Illah Reza Nourbakhsh. #AI
- Multiplicative induction principles for ℕ. ~ Eric Rodriguez. #ITP #LeanProver #Math
- Formalizing Fibonacci squares. ~ Harun Khan. #ITP #LeanProver #Math
- Programación literaria para sysadmins / devops. ~ drymer. #Emacs #OrgMode
- Faster smarter proof by induction in Isabelle/HOL. ~ Yutaka Nagashima. #ITP #IsabelleHOL
- Formalization in Lean of IMO 2006 Q3. ~ Tian Chen. #ITP #LeanProver #Math #IMO
- Verifying C11-style weak memory libraries via refinement. ~ Sadegh Dalvandi, Brijesh Dongol. #ITP #IsabelleHOL
- The design of mathematical language. ~ Jeremy Avigad. #Logic #Math
- Verified optimization. ~ Alexander Bentkamp, Jeremy Avigad. #ITP #LeanProver #Math
- Automatically generalizing theorems using typeclasses. ~ Alexander Best. #ITP #LeanProver
- Formal ML: A LEAN library for proving foundational results in measure theory, probability, statistics, and machine learning, based upon mathlib. #ITP #LeanProver #Math #MachineLearning
- Formalization of Ostrowski theorems in Lean theorem prover. ~ Ryan Lahfad†, Julien Marquet, Hadrien Barral. #ITP #LeanProver #Math
- On correctness and completeness of an n queens program. ~ Włodzimierz Drabent. #LogicProgramming #Prolog
- Colisiones matemáticas que muestran cómo confundir al algoritmo Neural Hash. ~ @Alvy. #AI #MachineLearning
- XAI methods for neural time series classification: A brief review. ~ Ilija Šimić, Vedran Sabol, Eduardo Veas. #DeepLearning #XAI
- A framework for understanding AI-induced field change: How AI technologies are legitimized and institutionalized. ~ Benjamin Cedric Larsen. #AI
- A first course in Artificial Intelligence. ~ Osondu Oguike #eBook #AI
- Machine learning and the continuum hypothesis (How the unprovable concerns the unlearnable). ~ Robert Passmann. #MachineLearning #Math
- Announcing Spectacle – A language for writing and checking formal specifications in Haskell. ~ Jacob Leach. #Haskell #FunctionalProgramming
- The Oxford Invariants Puzzle Challenges (Summer 2021, Week 3, Problem 1) in Lean. ~ Yaël Dillies, Bhavik Mehta. #ITP #LeanProver #Math
- Ideas that created the future: Classic papers of Computer Science. ~ Harry R. Lewis. #eBook #CompSci
- Core Haskell tools. ~ Gil Mizrahi (@_gilmi). #Haskell #FunctionalProgramming
- How Lisp became God’s own programming language. ~ @TwoBitHistory. #Lisp #Programming
- Natural deduction calculus for first-order logic. ~ Yazeed Alrubyli. #Logic #Math
- Assimilating the structure of formal and informal proof. ~ Kensho Tsurusaki, Akiko Aizawa. #ITP #LeanProver
- Balancing the formal and the informal in user-centred design. ~ JC Campos, MD Harrison, P Masci. #ITP #PVS
- Extracting functional programs from Coq, in Coq. ~ Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, Bas Spitters. #ITP #Coq
- Formal methods for security knowledge area. ~ David Basin. #FormalMethods
- HaskellFL: A tool for detecting logical errors in Haskell. ~ Vanessa Vasconcelos, Mariza A. S. Bigonha. #Haskell #FunctionalProgramming
- Abstraction in Reflex and CodeWorld. ~ Chris Smith (@cdsmithus). #Haskell #CodeWorld #FunctionalProgramming
- That one cool reader trick. ~ Solomon. #Haskell #FunctionalProgramming
- Namespaced De Bruijn indices. ~ Gabriella Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- Deep Learning: A critical appraisal. ~ Gary Marcus. #DeepLearning
- A functional reboot for Deep Learning. ~ Conal Elliott (@conal). #DeepLearning #FunctionalProgramming #Haskell
- Symbolic and automatic differentiation of languages. ~ Conal Elliott (@conal). #Agda #FunctionalProgramming
- What is the point of Lean’s maths library? ~ Kevin Buzzard. #ITP #LeanProver #Math
- Counting cardinalities. ~ Mitchell Vitez. #Haskell #FunctionalProgramming
- Skipping the binder bureaucracy with mixed embeddings in a semantics course (Functional Pearl). ~ Adam Chlipala. #ITP #Coq
- The Hoare State Monad (Proof Pearl). ~ Wouter Swierstra. #ITP #Coq
- Competitive programming in Haskell: monoidal accumulation. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Formalization in Lean of IMO 2001 Q6. ~ Sara Díaz, Johan Commelin. #ITP #LeanProver #Math #IMO
- Reasoning about iteration and recursion uniformly based on big-step semantics. ~ Ximeng Li, Qianying Zhang, Guohui Wang, Zhiping Shi, Yong Guan. #ITP #Coq
- A secure and formally verified commodity multiprocessor hypervisor. ~ Shih-Wei Li. #PhD_Thesis #ITP #Coq
- Kronecker product of matrices (in Lean). ~ Filippo A. E. Nuccio, Eric Wieser. #ITP #LeanProver #Math
- Depth-first and breadth-first search in Haskell. ~ Malvin Gattinger (@m4lvin). #Haskell #FunctionalProgramming
- Left and right folds (Comparison of a mathematical definition and a programmatic one). ~ Philip Schwarz (@philip_schwarz). #Haskell #Scala #FunctionalProgramming
- Elementary recursive algorithms. ~ Yiannis N. Moschovakis. #Algorithms #Logic #Math #CompSci
- Extracting functional programs from Coq, in Coq. ~ Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, Bas Spitters. #ITP #Coq
- A toy WASM symbolic interpreter. ~ Simon Marechal et als. #Haskell #FunctionalProgramming
- Relational forests (in Isabelle/HOL). ~ Walter Guttmann. #ITP #IsabelleHOL
- Theorem proving in classical logic. ~ David Davies. #Haskell #FunctionalProgramming #Logic
- Automatically generalizing theorems using typeclasses. ~ Alex J. Best. #ITP #LeanProver
- A brief intro to monad transformers. ~ Solomon. #Haskell #FunctionalProgramming
- Elements of differential geometry in Lean: A report for mathematicians. ~ Anthony Bordg, Nicolò Cavalleri. #ITP #LeanProver #Math
- Plotting in a formally verified way. ~ Guillaume Melquiond. #ITP #Coq
- Edukera: Teach Logic and Math with a proof assistant. #ITP #Coq #Edukera #Logic #Math
- Archetype, a DSL for Tezos. ~ Benoit Rognier. #ITP #Coq #Edukera #Archetype
- A logic theory pattern for linearized control systems. ~ Andrea Domenici, Cinzia Bernardeschi. #ITP #PVS
- Verifying time complexity of binary search using Dafny. ~ Shiri Morshtein, Ran Ettinger, Shmuel Tyszberowicz. #ATP #FormalVerification #Dafny
- Explaining counterexamples with giant-step assertion checking. ~ Benedikt Becker, Cláudio Belo Lourenço, Claude Marché. #ATP #Why3 #FormalVerification
- VeriFly: On-the-fly assertion checking with CiaoPP (extended abstract). ~ Miguel A. Sanchez-Ordaz, Isabel Garcia-Contreras, Víctor Pérez, Jose F. Morales, Pedro Lopez-Garcia, Manuel V. Hermenegildo./#EPTCS338.13 #Prolog #CiaoPP
- Haskell for the Elm enthusiast. ~ No Red Ink. #Haskell #Elm #FunctionalProgramming
- Haskell series part 2 (This is the second article of a series on the functional language Haskell for beginners). ~ Pierre Guillemot. #Haskell #FunctionalProgramming
- fromMaybe is Just a fold. ~ Dan Soucy (@ninedotnine). #Haskell #FunctionalProgramming
- When Howard Met Curry. ~ Rob Rix (@rob_rix). #Haskell #FunctionalProgramming
- Axiomatic Minkowski spacetime in Isabelle/HOL. ~ Richard Schmoetten. #MSc_Thesis #ITP #IsabelleHOL
- Archive of Formal Proofs. #ITP #IsabelleHOL
- Archive of Formal Proofs redesign. ~ Carlin MacKenzie. #ITP #IsabelleHOL
- Lean proof of Thomaes (popcorn) function. ~ Ender Doe. #ITP #LeanProver #Math
- Proof and computation: Perspectives for mathematics, computer science, and philosophy. ~ Klaus Mainzer. #Logic #Math #CompSci #ITP
- Oblivious Algebraic Data Types. ~ Qianchuan Ye, Benjamin Delaware. #ITP #Coq
- GHC curiosities: Equality constraints in kinds. ~ Ryan Scott. #Haskell #FunctionalProgramming
- Egglog 2: Automatically proving the pullback of a monic is monic. ~ Philip Zucke. #CategoryTheory
- Writing academic papers with org-mode. ~ Wouter Spekkink (@wouterspekkink). #Emacs #OrgMode
- Tying shoes with GADTs. ~ MorrowM. #Haskell #FunctionalProgramming
- Formalisation of interval methods for nonlinear root-finding. ~ Daniel Seidl. #BSc_Thesis #ITP #IsabelleHOL #Math
- New algebraic normative theories for ethical and legal reasoning in the LogiKEy framework. ~ Ali Farjami. #ITP #IsabelleHOL
- The categorical origin of monads in Haskell. ~ Marien Matser. #BSc_Thesis #Haskell #FunctionalProgramming #CategoryTheory
- What separates AI from an idiot savant is common sense: Hector Levesque. #AI #KRR
- Computer theorem prover verifies sophisticated new result. ~ David H Bailey. #ITP #ATP #Math #AI
- Ethical AI for Social Good. ~ Ramya Akula, Ivan Garibay. #AI
- Composable data validation with Haskell. ~ Ben Levy, Christian Charukiewicz. #Haskell #FunctionalProgramming
- Ode to a streaming ByteString (Or: lazy I/O without shooting yourself in the foot). ~ Patrick Thomson. #Haskell #FunctionalProgramming
- Strictness of foldr’ from containers. ~ Marcin Szamotulski (@me_coot). #Haskell #FunctionalProgramming
- Formalization of Gambler’s Ruin Problem in Isabelle/HOL. ~ Zibo Yang. #ITP #IsabelleHOL #Math
- Formalization of RBD-based Cause Consequence Analysis in HOL. ~ Mohamed Abdelghany, Sofiene Tahar. #ITP #HOL4
- Inductive Benchmarks for Automated Reasoning. ~ Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, Andrei Voronkov. #ATP
- Formalizing the Gromov-Hausdorff Space. ~ Sébastien Gouëzel. #ITP #LeanProver #Math
- Formalizing rotation number and its properties in Lean. ~ Yury Kudryashov. #ITP #LeanProver #Math
- Scalar actions in Lean’s Mathlib. ~ Eric Wieser. #ITP #LeanProver #Math
- A formalization of the (compositional) Z property. ~ Flávio L. C. de Moura,a Leandro O. Rezende. #ITP #Coq
- Confluence via the Z property in Coq. ~ Flávio L. C. de Moura, Leandro O. Rezende. #ITP #Coq
- The who in explainable AI: How AI background shapes perceptions of AI explanations. ~ Upol Ehsan, Samir Passi, Q. Vera Liao, Larry Chan, I-Hsiang Lee, Michael Muller, Mark O. Riedl. #AI #XAI
- The QED Manifesto. #ATP #ITP
- Proof assistant makes jump to big-league Math. ~ Kevin Hartnett (@KSHartnett). #ITP #LeanProver #Math
- Integrating an automated prover for projective geometry as a new tactic in the Coq proof assistant. ~ Nicolas Magaud. #ITP #Coq #Math
- Is computer algebra ready for conjecturing and proving geometric inequalities in the classroom? ~ Zoltán Kovács, Tomás Recio, Robert Vajda, M. Pilar Vélez. #GeoGebra #Math
- [[https://www.researchgate.net/profile/Zoltan-Kovacs-3/publication/353466393_Is_computer_algebra_ready_for_conjecturing_and_proving_geometric_inequalities_in_the_classroom/links/60ff0d602bf3553b29142ca4/Is-computer-algebra-ready-for-conjecturing-and-proving-geometric-inequalities-in-the-classroom.pdf?origin=homeFeed_download&_iepl%5BactivityId%5D=1396227761647622&_iepl%5BactivityTimestamp%5D=1627257600&_iepl%5BactivityType%5D=person_publish_publication&_iepl%5Bcontexts%5D%5B0%5D=homeFeed&_iepl%5BrecommendationActualVariant%5D=&_iepl%5BrecommendationDomain%5D=&_iepl%5BrecommendationScore%5D=&_iepl%5BrecommendationTargetActivityCombination%5D=&_iepl%5BrecommendationType%5D=&_iepl%5BfeedVisitIdentifier%5D=&_iepl%5BpositionInFeed%5D=11&_iepl%5BsingleItemViewId%5D=KUZ4i5ThvdxaoZf1ctK2jh1s&_iepl%5BviewId%5D=mkX7HMc1c9d9Y7Hyr4ISW4R9&_iepl%5BhomeFeedVariantCode%5D=ncls&_iepl%5B__typename%5D=HomeFeedTrackingPayload&_iepl%5BinteractionType%5D=publicationDownload&_iepl%5BtargetEntityId%5D=PB%3A353466393][Is computer algebra ready for conjecturing and proving geometric inequalities in the classroom? [Slides]]] ~ Zoltán Kovács, Tomás Recio, Robert Vajda, M. Pilar Vélez. #GeoGebra #Math
- A formalization of properties of continuous functions on closed intervals. ~ Yaoshun Fu, Wensheng Yu. #ITP #Coq #Math
- Formal analysis in Coq. #ITP #Coq #Math
- GeoLogic – Graphical interactive theorem prover for Euclidean geometry. ~ Miroslav Olsak. #ITP #Logic #Math
- GeoLogic: Tool for euclidean geometry aware of logic. ~ Miroslav Olsak. #ITP #Logic #Math
- Case studies in formal reasoning about lambda-calculus: Semantics, Church-Rosser, standardization and HOAS. ~ Lorenzo Gheri, Andrei Popescu. #ITP #IsabelleHOL
- An introduction to the Naproche natural language proof checker. ~ Peter Koepke. #ITP #IsabelleHOL #Naproche #Logic #Math
- Intuitionistic epistemic logic in Coq. ~ Christian Albert Hagemeier. #BSc_Thesis #ITP #Coq #Logic
- What does saying that ‘Programming is hard’ really say, and about whom? ~ Brett A. Becker. #Programming
- Formalization in Lean of IMO 2021 Q1. ~ Mantas Baksys. #ITP #LeanProver #Math #IMO
- Formalizing Galois theory (in Lean). ~ Thomas Browning, Patrick Lutz. #ITP #LeanProver #Math
- Hakyll how-to: pages without source files. ~ Fraser Tweedale (@hackuador). #Haskell #FunctionalProgramming
- Why math is an art, not a science. ~ Peter Flom. #Math
- Combinatorics in Lean. ~ Bhavik Mehta. #ITP #LeanProver #Math
- First-order languages and structures in Lean. ~ Aaron Anderson, Jesse Michael Han, Floris van Doorn. #ITP #LeanProver #Logic #Math
- Schur–Zassenhaus theorem in Lean. ~ Thomas Browning. #ITP #LeanProver #Math
- Univalence from a computer science point-of-view. ~ Dan Licata. #Logic #Math #CompSci
- Haskell (The most gentle introduction ever). ~ Mateusz Podlasin (@m_podlasin). #Haskell #FunctionalProgramming
- A comparison of the mathematical proof languages Mizar and Isar. ~ Freek Wiedijk, Markus Wenzel. #ITP #Mizar #IsabelleHOL #Isar
- The mathematical vernacular. ~ Freek Wiedijk. #ITP #Mizar #IsabelleIsar
- The Krein-Milman theorem in Lean. ~ Yaël Dillies. #ITP #LeanProver #Math
- Sets and logic in Lean. ~ Kevin Buzzard. #ITP #LeanProver #Logic #Math
- Functions and equivalence relations in Lean. ~ Kevin Buzzard. #ITP #LeanProver #Logic #Math
- A computer verified, monadic, functional implementation of the integral. ~ Russell O’Connor, Bas Spitters. #ITP #Coq #Math
- Static analysis using Haskell and Datalog. ~ Luc Tielen (@luctielen). #Haskell #FunctionalProgramming
- `forall`s in Data Types. ~ Brandon Chinn. #Haskell #FunctionalProgramming
- Every group is a McCune group (in Lean). ~ Bhavik Mehta. #ITP #LeanProver #Math
- Balancing automation and control for formal verification of microprocessors. #ITP #ACL2
- Learning theorem proving components. ~ Karel Chvalovský, Jan Jakubův, Miroslav Olšák, Josef Urban. #ATP #MachineLearning
- Connecting constructive notions of ordinals in Homotopy Type Theory. ~ Nicolai Kraus, Fredrik Nordvall Forsberg, Chuangjie Xu. #HoTT #ITP #Agda #Logic #Math
- Artificial intelligence (A textbook). ~ Charu C. Aggarwal.3#v=onepage&q&f=false #eBook #AI
- Announcing a new newsletter on mechanizing mathematics. ~ Michael Harris. #ITP #ATP #Math
- Silicon Reckoner: an opinionated newsletter about the implications of mechanization of mathematics. ~ Michael Harris. #ITP #ATP #Math
- IsaSAT and Kissat entering the EDA Challenge 2021. ~ Mathias Fleury. #ITP #IsabelleHOL #SATSolvers
- Waterproof: an educational environment for writing mathematical proofs in interactive notebooks. #ITP #Coq #Math
- Measure theory in Waterproof (Interactive theorem-proving for measure theory in an educational setting). ~ Jan Moraal. #ITP #Coq #Math
- Compositional optimizations for CertiCoq. ~ Zoe Paraskevopoulou, John M. Li, Andrew W. Appel. #ITP #Coq
- Noetherian induction for computer-assisted first-order reasoning. ~ Sorin Stratulat. #ITP #Coq #Logic #Math
- Verification of linked data structures in Dafny. ~ Jorge Blázquez Saborido. #TFG #ATP #SMT #Dafny
- Probability tree diagrams. Recursion schemes. Why finding the right solution is sometimes hard? ~ Robert Peszek. #Haskell #FunctionalProgramming
- Purely-functional reverse-mode automatic differentiation with delimited continuations. ~ Marco Zocca (@ocramz_yo). #Haskell #FunctionalProgramming
- Proceedings of ICML 2021 workshop on theoretic foundation, criticism, and application trend of explainable AI. #AI #MachineLearning #XAI
- Publishing articles and books with Org Mode export. ~ Peter Prevos (@pprevos). #Emacs #OrgMode #LaTeX
- The Hales-Jewett theorem (in Lean). ~ David Wärn. #ITP #LeanProver #Math
- Emacs, el editor de texto libre con vocación de sistema operativo: sus ‘extensiones’ más usadas suplen toda clase de aplicaciones. ~ Marcos Merino (@MarcosMerino_B). #Emacs
- Of all the programming languages in the world, why Haskell? ~ Charles Hoskinson. #Haskell #FunctionalProgramming #Cardano
- Emacs Application Framework (EAF). #Emacs
- Incremental vulnerability detection via back-propagating symbolic execution of insecurity separation logic. ~ Toby Murray, Pengbo Yan, Gidon Ernst. #ITP #IsabelleHOL
- Integrating an automated prover for projective geometry as a new tactic in the Coq proof assistant. ~ Nicolas Magaud. #ITP #Coq #Math
- Reasoning on figures of theoretical geometry theorems. ~ Eirini Vandorou. #MSc_Thesis #Clojure #FunctionalProgramming #Prolog #LogicProgramming #Math
- Hspec hooks. ~ Matt Parsons (@mattoflambda). #Haskell #FunctionalProgramming
- Distributing intersection and union types with splits and duality (Functional pearl). ~ Xuejing Huang, Bruno C.D.S. Oliveira. #Haskell #FunctionalProgramming
- A defense of logicism. ~ Hannes Leitgeb, Uri Nodelman, Edward N. Zalta. #Logic #Math
- Facilitating meta-theory reasoning. ~ Giselle Reis. #Logic #CompSci #SELLF #TATU #QUATI #OCaml #FunctionalProgramming
- Touring the MetaCoq project. ~ Matthieu Sozeau. #ITP #Coq
- Automating induction by reflection. ~ Johannes Schoisswohl, Laura Kovács. #ATP #Logic
- Automated induction by reflection. ~ Johannes Schoisswohl. #MSc_Thesis #ATP #Logic
- Countability of inductive types formalized in the object-logic level. ~ Qinxiang Cao, Xiwei Wu. #ITP #Coq
- SMLtoCoq: Automated generation of Coq specifications and proof obligations from SML programs with contracts. ~ Laila El-Beheiry, Giselle Reis, Ammar Karkour. #ITP #Coq #SML #FunctionalProgramming
- Systematic translation of formalizations of type theory from intrinsic to extrinsic style. ~ Florian Rabe, Navid Roux. #MMT #LogicalFramework
- A reinforcement learning environment for mathematical reasoning via program synthesis. ~ Joseph Palermo, Johnny Ye, Alok Singh. #AI #MachineLearning #Math
- Explainable AI: current status and future directions. ~ Prashant Gohel, Priyanka Singh, Manoranjan Mohanty. #XAI #AI #MachineLearning
- Cheap interpreter, part 4: stack machines. ~ Gary Verhaegen. #Haskell #FunctionalProgramming
- Haskell series part 1. ~ Pierre Guillemot (@hnb_02). #Haskell #FunctionalProgramming
- Template Haskell performance tips. ~ Matt Parsons. #Haskell #FunctionalProgramming
- Artificial Intelligence, Robotics & Data Science (CSIC Scientific Challenges: Towards 2030, Volume 11). #AI #DataScience #MachineLearning
- Copilot, el asistente de AI de GitHub recibió fuertes críticas de la comunidad open source. ~ Darkcrizt. #AI #Copilot #Programación
- HR’s role in understanding and mitigating AI bias. ~ Laura Baldwin. #AI
- (Risp (in (Rust) (Lisp))). ~ Stepan Parunashvili (@stopachka). #Rust #Lisp
- Writing an (overly) idiomatic Fizzbuzz with Rust. ~ Ryan Frazier. #RustLang
- Is Rust used safely by software developers? ~ Ana Nora Evans, Bradford Campbell, Mary Lou Soffa. #RustLang
- Explainability and auditability in ML: Definitions, techniques, and tools. ~ Ejiro Onose. #AI #MachineLearning #XAI
- Reinforcement learning for interactive theorem proving (Creating an artificial student). ~ Jolijn Cottaar. #ITP #Coq #MachineLearning
- Game development in Haskell. ~ Jan Rychlý. #BSc_Thesis #Haskell #FunctionalProgramming
- A mechanised proof of the time invariance thesis for the weak call-by-value λ-calculus. ~ Yannick Forster, Fabian Kunze, Gert Smolka, Maximilian Wuttke. #ITP #Coq #CompSci
- A classification of artificial intelligence systems for mathematics education. ~ Steven Van Vaerenbergh, Adrián Pérez-Suay. #AI #Math
- GHC: Dependency analysis of Haskell declarations. ~ Artyom Kuznetsov. #Haskell #FunctionalProgramming
- Finitely generated abelian groups (in Isabelle/HOL). ~ Joseph Thommes, Manuel Eberl. #ITP #IsabelleHOL #Math
- Formalizing the Gromov-Hausdorff space. ~ Sébastien Gouëzel. #ITP #LeanProver #Math
- A flexible approach to argumentation framework analysis using theorem proving. ~ David Fuenmayor, Alexander Steen.f#page=26 #ITP #IsabelleHOL
- Express: Applications of dynamically typed Haskell expressions. ~ Rudy Matela. #Haskell #FunctionalProgramming
- Learning about proof with the theorem prover Lean: the abundant numbers task. ~ Athina Thoma, Paola Iannone. #ITP #LeanProver #Math
- Haskell books: a tagged index of English books related to the Haskell programming language. ~ Travis Cardwell. #Haskell #FunctionalProgramming
- General automation in Coq through modular transformations. ~ Valentin Blot, Louise Dubois de Prisque, Chantal Keller, Pierre Vial. #ITP #Coq
- Synthetic undecidability of MSELL via FRACTRAN mechanised in Coq. ~ Dominique Larchey-Wendling. #ITP #Coq
- Type-theoretic constructions of the final coalgebra of the finite powerset functor. ~ Niccolò Veltri. #ITP #Agda
- Alethe: Towards a generic SMT proof format. ~ Hans-Jörg Schurr, Mathias Fleury, Haniel Barbosa, Pascal Fontaine. #ATP #SMT
- Conjectures, tests and proofs: An overview of theory exploration. ~ Moa Johansson, Nicholas Smallbone. #Haskell #FunctionalProgramming #QuickSpec
- A framework for proof-carrying logical transformations. ~ Quentin Garchery. #FunctionalProgramming #OCaml #Why3
- Isabelle’s metalogic: Formalization and proof checker. ~ Tobias Nipkow, Simon Roßkopf.f#page=104 #ITP #IsabelleHOL
- Reliable reconstruction of fine-grained proofs in a proof assistant. ~ Hans-Jörg Schurr, Mathias Fleury, Martin Desharnais.f#page=459 #ATP #SMT #ITP #IsabelleHOL
- The Isabelle/Naproche natural language proof assistant. ~ Adrian De Lon et als.f#page=619 #ITP #IsabelleHOL
- Turing machines in Lean. ~ Mario Carneiro et als. #ITP #LeanProver #CompSci
- Exploring linear Traversable using generics. ~ Sjoerd Visscher. #Haskell #FunctionalProgramming
- What OpenAI and GitHub’s “AI pair programmer” means for the software industry. ~ Ben Dickson. #AI #Programming #Copilot
- Using AI to Drill Down in Physics. ~ Bennie Mols. #AI
- Matemáticas dinámicas: estupendas visualizaciones a partir de código abierto. ~ @Alvy. #Matemáticas #Computación
- Dynamic mathematics (Interactive mathematical applets & animations). ~ Juan Carlos Ponce. #Math
- Formalización del teorema de existencia de modelo en Isabelle/HOL. ~ Sofı́a Santiago Fernández. #TFM #ITP #IsabelleHOL #Lógica #Matemática
- Formalized signature extension results for confluence, commutation and unique normal forms. ~ A. Lochmann, F. Mitterwallner, A. Middeldorp. #ITP #IsabelleHOL
- Answers to some open questions of Ulrich & Meredith. ~ Matthew Walsh, Branden Fitelson. #ATP #Otter #Logic #Math
- SpecCheck: Specification-based testing for Isabelle/ML. ~ Kevin Kappelmann, Lukas Bulwahn. #ITP #IsabelleHOL
- Coq meets CλaSH (Proposing a hardware design synthesis flow that combines proof assistants with functional hardware description languages). ~ Fritjof Bornebusch. #PhD_Thesis #ITP #Coq
- Models for software verification: Proving program correctness. ~ Boro Sitnikovski, Lidija Goracinova-Ilieva, Biljana Stojcevska. #FormalVerification #Coq #Dafny
- Using LSTM to predict tactics in Coq. ~ X. Luan, X. Zhang, M. Sun. #ITP #Coq #MachineLearning #NeuralNetwork
- A theory of higher-order subtyping with type intervals. ~ Sandro Stucki, Paolo G. Giarrusso. #ITP #Agda
- Curry-Howard correspondence: An intuitive language for mathematics. ~ Xiao Tan. #MSc_Thesis #Logic #CompSci
- Practical suggestions for mathematical writing. ~ R. Bell, B. Kadets, P. Srinivasan, N. Triantafillou, I. Vogt. #Math
- Complementing the digital programming tutor Ask-Elle with program synthesis. ~ Gustav Engsmyre, Karl Wikström. #MSc_Thesis #Haskell #FunctionalProgramming
- Code Lean contenant les preuves d’un cours standard sur les espaces métriques. ~ Frederic Le Roux. #ITP #LeanProver #Math
- Function application: Using the dollar sign ($). ~ James Bowen (@james_OWA). #Haskell #FunctionalProgramming
- A brief introduction to Template Haskell. ~ Heitor Toledo Lassarote de Paula. #Haskell #FunctionalProgramming
- Will AI rewrite coding? ~ Samuel Greengard. #AI
- Groups I. Omar Harhara. #ITP #LeanProver #Math
- [[https://www.iiia.csic.es/sat2021/program/Slides39.pdf][Chinese remainder encoding for hamiltonian cycles [Slides]]]. ~ Marijn Heule. #ATP #SATSolvers #Math
- [[https://www.iiia.csic.es/sat2021/program/Presentation39.mp4][Chinese remainder encoding for hamiltonian cycles [Video]]]. ~ Marijn Heule. #ATP #SATSolvers #Math
- [[https://www.iiia.csic.es/sat2021/program/Slides48.pdf ][DiMo: Discrete modelling using propositional logic [Slides]]]. ~ Norbert Hundeshagen, Martin Lange and Georg Siebert. #Logic #Math
- [[https://www.iiia.csic.es/sat2021/program/Presentation48.mp4][DiMo: Discrete modelling using propositional logic [Video]]]. ~ Norbert Hundeshagen, Martin Lange and Georg Siebert. #Logic #Math
- DiMo: A tool for discrete modelling using propositional logic (version 0.2.2). ~ Martin Lange. #Logic #Math
- Verifying correctness of Haskell programs using the programming language Agda and framework agda2hs. ~ Dixit Sabharwal, Jesper G.H. Cockx, Lucas F.B. Escot. #ITP #Agda #Haskell #FunctionalProgramming
- Security verification in the context of 5G sensor networks. ~ Piotr Remlein, Urszula Stachowiak. #Haskell #FunctionalProgramming
- Deriving a symbolic executor for definitional interpreters suitable for the study of heuristics. ~ Laura-Ana Pîrcalaboiu, Casper Bach Poulsen, Cas van der Rest. #Haskell #FunctionalProgramming
- Goodbye C developers: The future of programming with certified program synthesis. ~ Kiran Gopinathan (@Gopiandcoshow). #ITP #Coq
- Certifying the synthesis of heap-manipulating programs. ~ Y. Watanabe, K. Gopinathan, George Pîrlea, Nadia Polikarpova, I. Sergey. #ITP #Coq
- Formalizing higher-order termination in Coq. ~ Deivid Vale, Niels van der Weide.f#page=71 #ITP #Coq
- Formalization of a sign determination algorithm in real algebraic geometry. ~ Cyril Cohen. #ITP #Coq #Math
- The Cantor-Schröder-Bernstein for homotopy types, or ∞-groupoids, in Agda. ~ Martin Escardo. #ITP #Agda #Logic #Math
- The Cantor–Schröder–Bernstein Theorem for ∞-groupoids. ~ Martin Escardo. #Logic #Math
- Practical verification of the Haskell ranged-sets library. ~ Ioana Savu, Jesper Cockx, Lucas Escot. #ITP #Agda #Haskell #FunctionalProgramming
- Producing a verified implementation of sequences using agda2hs. ~ Shashank Anand, Jesper Cockx, Lucas Escot. #ITP #Agda #Haskell #FunctionalProgramming
- Reflective programs in tree calculus. ~ Barry Jay (@Jay59009444). #eBook #ITP #Coq
- Proofs in Coq for the book “Reflective programs in tree calculus”. ~ Barry Jay (@Jay59009444). #ITP #Coq
- A tutorial implementationof a dependently typed lambda calculus. ~ Andres Löh, Conor McBride, Wouter Swierstra. #ITP #Agda
- Formalising contemporary mathematics in simple type theory. ~ Lawrence Paulson. #ITP #IsabelleHOL #Math
- Isabelle’s metalogic: Formalization and proof checker. ~ Tobias Nipkow, Simon Roßkopf. #ITP #IsabelleHOL
- Arming polysemy with Arrows. ~ Robert Peszek. #Haskell #FunctionalProgramming
- Functors and monads for people who have read too many “Tutorials”. ~ Jeremy Bowers. #Haskell #FunctionalProgramming
- A Perron–Frobenius theorem for deciding matrix growth. ~ RenéThiemann. #ITP #IsabelleHOL #Math
- CoqQFBV: A scalable certified SMT quantifier-free bit-vector solver. ~ Xiaomu Shi et als. #ITP #Coq
- On a machine-checked proof for an optimized method to multiply polynomials. ~ S.D. Meshveliani.f#page=88 #ITP #Agda #Math
- Augmenting the human mathematician. ~ H.K. Sørensen, M.W. Johansen, R. Hoekzema, H. Breman. #ITP #ATP #Math
- Towards finding longer proofs. ~ Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, Josef Urban. #ATP #MachineLearning
- Towers of Hanoi from a random start. ~ Chris Smith (@cdsmithus). #Haskell #FunctionalProgramming
- Well-founded recursion. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Math
- A modular formalisation of finite group theory. ~ Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, LaurentThéry. #ITP #Coq #Math
- SAT solver-prover in Lean 4. ~ Siddhartha Gadgil. #ITP #LeanProver #Logic
- ProvingGround: Automated Theorem proving by learning. ~ Siddhartha Gadgil. #ITP #LeanProver #MachineLearning
- Automating Mathematics? ~ Siddhartha Gadgil.l#/ #Math #ATP #ITP #AI
- Euclidean geometry by high-performance solvers? ~ Siddhartha Gadgil, Anand Tadipatri. #Math #ATP #SAT #SMT
- A formally verified proof of the central limit theorem. ~ Luke Serafin. #PhD_Thesis #ITP #IsabelleHOL #Math
- A formally verified proof of Kruskal’s tree theorem in Lean. ~ Minchao Wu. #ITP #LeanProver #Math
- Typed programs don’t leak data. ~ Mistral Contrastin. #Haskell #FunctionalProgramming
- Historia de desafíos matemáticos. Cómo ganar un millón de dólares. ~ Antonio Pérez (@aperezsanz). #Matemáticas vía @manuel_de_leon
- La prova del software (in Italian). ~ Riccardo Brasca et als. #ITP #LeanProver #Math
- Groundwork for a fallibilist account of Mathematics. ~ Silvia De Toffoli. #Math
- Associated types in two different ways. #Haskell #FunctionalProgramming
- Creación artística y creación matemática. ~ Juan Arias de Reyna. #Matemáticas #ITP #LeanProver
- Abstract algebra: Theory and applications. ~ Thomas W. Judson et als. #eBook #Math #Sage
- Taller de Sage. ~ Antonio Behn. #Sage #Matemáticas
- MiniSail: A kernel language for the ISA specification language SAIL in Isabelle/HOL. ~ Mark Wassell. #ITP #IsabelleHOL
- Public announcement logic (in Isabelle/HOL). ~ Asta Halkjær From (@astahfrom). #ITP #IsabelleHOL
- Formalized soundness and completeness of epistemic logic. ~ Asta Halkjær From (@astahfrom) et als. #Logic #ITP #IsabelleHOL
- Results in modal and dynamic epistemic logic (A formalization in Lean). ~ Paula Neeley. #Logic #ITP #LeanProver
- Hito de las demostraciones asistidas por ordenador en Nature. ~ Nerea Diez López. #DAO #LeanProver #Matemáticas
- Embedding Youtube videos with org-mode links. ~ Artur Malabarba. #OrgMode #Emacs
- Verified model checking for conjunctive positive logic. ~ Alex Abuin et als. #ITP #Dafny
- CoStar: a verified ALL (*) parser. ~ Sam Lasser et als. #ITP #Coq
- Revamping hardware persistency models: view-based and axiomatic persistency models for Intel-x86 and Armv8. ~ Kyeongmin Cho et als. #ITP #Coq
- Las matemáticas que estudian los límites de los ordenadores. ~ Daniel Graça, Ágata A. Timón. #Matemáticas #Computación
- A formalization of elementary group theory in the proof assistant Lean. ~ Andrew Zipperer. #ITP #LeanProver #Math
- Types versus sets in math and programming languages. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- The dawn of formalized mathematics. ~ Andrej Bauer (@andrejbauer). #ITP #Math
- Van der Waerden’s theorem in Isabelle/HOL. ~ Katharina Kreuzer, Manuel Eberl. #ITP #IsabelleHOL #Math
- Deconstructing classes. ~ Nicholas Clarke. #Haskell #FunctionalProgramming
- A formally verified checker for first-order proofs. ~ Seulkee Baek. #ITP #Agda #Logic
- Reaching for the star: Tale of a monad in Coq. ~ Pierre Nigron, Pierre-Évariste Dagand. #ITP #Coq
- Mechanising complexity theory: The Cook-Levin theorem in Coq. ~ Lennard Gäher, Fabian Kunze. #ITP #Coq
- A mechanized proof of the max-flow min-cut theorem for countable networks. ~ Andreas Lochbihler. #ITP #IsabelleHOL
- Formalization of basic combinatorics on words. ~ Štěpán Holub, Štěpán Starosta. #ITP #IsabelleHOL
- Proof Pearl: Playing with the Tower of Hanoi formally. ~ Laurent Théry. #ITP #Coq
- The CakeML project’s quest for ever stronger correctness theorems. ~ Magnus O. Myreen. #ITP #HOL4
- A natural formalization of the mutilated checkerboard problem in Naproche. ~ Adrian De Lon, Peter Koepke, Anton Lorenzen. #ITP #Naproche
- Verified progress tracking for timely dataflow. ~ M. Brun, S. Decova, A. Lattuada, D. Traytel. #ITP #IsabelleHOL
- Ptolemy’s Theorem in Lean. ~ Manuel Candales, Benjamin Davidson. #ITP #LeanProver #Math
- Formal software verification measures up. ~ Samuel Greengard. #FormalVerification
- Program verification: Vision and reality. ~ Moshe Y. Vardi. #FormalVerification
- Consequence relations (An introduction to the Tarski-Lindenbaum method). ~ Alex Citkin, Alexey Muravitsky. #eBook #Logic #Math
- From proof theory to proof assistants (Challenges of responsible software and AI). ~ Klaus Mainzer. #ITP #Coq #AI
- A shorter compiler correctness proof for language IMP. ~ Pasquale Noce. #ITP #IsabelleHOL
- Isabelle community conventions. #ITP #IsabelleHOL
- FindFacts: Experimental search platform for Isabelle and the AFP./# #ITP #IsabelleHOL
- Isabelle quick access links. #ITP #IsabelleHOL
- HMock: first rate mocks in Haskell. ~ Chris Smith (@cdsmithus). #Haskell #FunctionalProgramming
- A new kind of programming: Tactic metaprogramming in Haskell. ~ Sandy Maguire. #Haskell #FunctionalProgramming
- Testing smart contracts with QuickCheck. ~ John Hughes. #Haskell #FunctionalProgramming
- Lift unliftable (and unlift liftable). ~ Veronika Romashkina (@vrom911). #Haskell #FunctionalProgramming
- Algebras for weighted search. ~ Donnacha Oisín Kidney, Nicolas Wu. #Haskell #FunctionalProgramming
- Competitive programming in Haskell: folding folds. ~ Brent Yorgey. #Haskell #FunctionalProgramming
- Molecular dynamic simulations in Haskell. ~ Sascha Bubeck (@SaschaBubeck). #Haskell #FunctionalProgramming
- Mathematicians welcome computer-assisted proof in ‘grand unification’ theory. ~ Davide Castelvecchi. #ITP #LeanProver #Mat
- Formal verification of composable security proofs. ~ Seyed Reza Sefidgar. #PhDThesis #ITP #IsabelleHOL
- An alternative axiomatic presentation of Nelson algebras. ~ Juan Manuel Cornejo, Andrés Gallardo, Luiz Monteiro, Ignacio Viglizzo. #ATP #Prover9 #Mace4 #Math
- La gran familia de los números. ~ Raúl Ibáñez. #Matemáticas
- Computer says ‘I don’t know’ (The case for Honest AI). ~ Peter Flach. #AI via @hakankj
- Finite abstract algebra in Haskell. ~ Ben Selfridge. #Haskell #FunctionalProgramming #Math
- Undecidability and incompleteness of second-order logic. ~ Mark Koch. #ITP #Cog #Logic #Math
- Integration verification across software and hardware for a simple embedded system. ~ A. Erbsen, S. Gruetter, J. Choi, C. Wood, A. Chlipala. #ITP #Coq
- Don’t mind the formalization gap: The design and usage of Hs-to-Coq. ~ Antal Spector-Zabusky. #PhD_Thesis #ITP #Coq #Haskell #FunctionalProgramming
- Hybrid systems verification with Isabelle/HOL: Simpler syntax, better models, faster proofs. ~ Simon Foster, Jonathan Julián Huerta y Munive, Mario Gleirscher, Georg Struth. #ITP #IsabelleHOL
- Median heaps in Haskell. ~ Micah Cantor. #Haskell #FunctionalProgramming
- Theorem proving and Artificial Intelligence (A brief introduction). ~ Josef Urban. #ATP #ITP #AI #MachineLearning
- Towards a human-like reasoning system. ~ Mateja Jamnik. #ATP #AI
- Mathematical reasoning in humans. ~ Jay McClelland. #AI #Math
- From Hammer to Scalpel: Progress in Automated Theorem Proving. ~ Markus Rabe. #ATP #AI
- Training a first-order theorem prover from synthetic data. ~ Vlad Firoiu et als. #ATP #AI #MachineLearning
- Training a first-order theorem prover from synthetic data. ~ Vlad Firoiu et als. #ATP #AI #MachineLearning
- Proof artifact co-training for theorem proving with language models. ~ Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, Stanislas Polu. #ITP #LeanProver #MachineLearning
- Neural theorem proving in Lean using proof artifact co-training and language models. ~ Jesse Michael Han. #ITP #LeanProver #MachineLearning
- Video series “Haskell by Example”. ~ Michael Oswald. #Haskell #FunctionalProgramming
- Formalisation du théorème de décomposition de Hahn avec le démonstrateur interactif Isabelle. ~ Marie Cousin. #ITP #IsabelleHOL #Math
- Synthetic completeness for a terminating Seligman-Style tableau system. ~ Asta Halkjær From. #ITP #IsabelleHOL #Logic #Math
- Teaching computers about numbers. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Towards a verified compiler from Cogent to LLVM. ~ Harrison Jay Scott. #BsC_Thesis #ITP #Coq
- Birkhoff’s completeness theorem for multi-sorted algebras formalized in Agda. ~ Andreas Abel. #ITP #Agda #Math
- Global optimisation with constructive reals. ~ Dan R. Ghica, odd Waugh Ambridge. #ITP #Agda #Math
- Haskell and the elegant attack. ~ Tony Day (@tonyday567). #Haskell #FunctionalProgramming
- Demostración del teorema de Cantor-Schröder-Bernstein. ~ Urtzi Buijs (@archimedestub). #Matemáticas
- The fixed point. ~ Rebecca Skinner. #Haskell #FunctionalProgramming
- What the rec? Types dependent on terms, Lean eliminators, and threshold concepts. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver
- Practical Haskell use cases. #Haskell #FunctionalProgramming
- Introducing Haskell in Soisy. ~ Marco Perone. #Haskell #FunctionalProgramming
- Programming puzzles. ~ Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, Adam Tauman Kalai. #Programming #Python
- Python Programming Puzzles (P3). #Programming #Python
- Des bibliothèques aux logiciels: une histoire d’amour! ~ Sabrina Granger. #Programming
- Jornada sobre Inteligencia Artificial de los Institutos de Investigación de la Universidad de Zaragoza. #IA
- Certified quantum computation in Isabelle/HOL. ~ Anthony Bordg, Hanna Lachnitt, Yijun He. #ITP #IsabelleHOL
- Combining pencil/paper proofs and formal proofs, a challenge for Artificial Intelligence and mathematics education. ~ Julien Narboux, Viviane Durand-Guerrier. #ITP #Coq #Math
- A framework for certified program synthesis. ~ Yasunari Watanabe. #PhDThesis #ITP #Coq
- Learning to guide a saturation-based theorem prover. ~ Ibrahim Abdelaziz et als. #ATP #MachineLearning
- Learning set theory through Coq (part 1). ~ Kyle Stemen. #ITP #Coq #Math
- Learning set theory through Coq (part 2). ~ Kyle Stemen. #ITP #Coq #Math
- Learning set theory through Coq (part 3). ~ Kyle Stemen. #ITP #Coq #Math
- Formally verified convergence of policy-rich DBF routing protocols. ~ Matthew L. Daggitt, Timothy G. Griffin. #ITP #Agda
- Teaching a HOL course: experience report. ~ Konrad Slind et als. #ITP #HOL4
- Why A.I. Moonshots Miss (Ambitious predictions about the future powers of computers keep turning out to be wrong). ~ Jeffrey Funk, Gary Smith. #AI
- Online machine learning techniques for Coq: a comparison. ~ #ITP #Coq #MachineLearning
- Learning proofs for the classification of nilpotent semigroups. ~ Carlos Simpson. #ATP #MachineLearning #Math
- Re-inventing the Monad wheel. ~ Boro Sitnikovski (@BSitnikovski). #Haskell #FunctionalProgramming
- Why Kleisli arrows matter. ~ Douglas M. Auclair (geophf). #Haskell #FunctionalProgramming
- TypeFunc: This repository collects some links and resources for learning about type theory, functional programming, and related subjects. ~ Avatar William DeMeo. #ITP #FunctionalProgramming #Agda #Coq #Haskell #Idris #LeanProver #Scala
- Roger Penrose explains Godel’s incompleteness theorem in 3 minutes. #Logic #Math
- Half a year of the Liquid Tensor Experiment: Amazing developments. ~ Peter Scholze. #ITP #LeanProver #Math
- A formalization of dynamic epistemic logic. ~ Paula Neeley. #ITP #LeanProver #Logic
- Verified quadratic virtual substitution for real arithmetic. ~ Matias Scharager, Katherine Cordwell, Stefan Mitsch, André Platzer. #ITP #IsabelleHOL #Logic #Math
- Verifying value iteration and policy iteration in Coq. ~ David M. Masters. #MSc_Thesis #ITP #Coq #MachineLearning
- A toolbox for mechanised first-order logic. ~ Johannes Hostert, Mark Koch, Dominik Kirst. #ITP #Coq #Logic #Math
- The role of entropy in guiding a connection prover. ~ Zsolt Zombori, Josef Urban, Miroslav Olšák. #ATP #MachineLearning
- Declaration groups: where order of declarations suddenly matters in Haskell. ~ Artyom Kazak. #Haskell #FunctionalProgramming
- Final tagless encodings have little to do with typeclasses. ~ Ben Levy. #Haskell #FunctionalProgramming
- Getting started with Haskell projects using Scotty. ~ Juan Pedro Villa Isaza. #Haskell #FunctionalProgramming
- Phantom types and globbing bugs. ~ Patrick Brisbin. #Haskell #FunctionalProgramming
- Probability for Slay the Spire fanatics. ~ Gabriel Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming #Math
- Bach as mathematician. ~ David H Bailey. #Math #Music #Bach
- El Teorema de Cantor-Schröder-Bernstein. ~ Urtzi Buijs @archimedestub. #Lógica #Matemática
- Mathematicians identify threshold at which shapes give way. ~ Mordechai Rorvig. #Math
- Using dependent types to write proofs in Haskell. ~ Jan Mas Rovira. #Haskell #FunctionalProgramming #Logic
- Functional Programming - the True Silver Bullet. ~ Ilya Suzdalnitski. #FunctionalProgramming
- How a simple arithmetic puzzle can guide discovery. ~ Pradeep Mutalik. #Math
- Relations in Lean. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Math
- Decidable propositions I. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Math
- Decidable propositions II. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Math
- Decidable propositions III. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Math
- Vectors and dependent function types. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Math
- The limits of computation. ~ A. Powell. #CompSci #LambdaCalculus #TypeTheory
- Practical normalization by evaluation for EDSLs. ~ N. Valliappan, A. Russo, S. Lindley. #Haskell #FunctionalProgramming
- Hook: An embedded domain-specific language for fusing implicit interactions to explicit event handlers. ~ Tomoki Shibata, Usamatthew Ahrens, Usarobert J.K. Jacob. #Haskell #FunctionalProgramming
- Some axioms for mathematics. ~ Frédéric Blanqui et als. #Logic #Math
- Set of support, demodulation, paramodulation: a historical Perspective. ~ Maria Paola Bonacina. #ATP #Logic #Math
- Lifting the exponent. ~ Jakub Kądziołka. #ITP #IsabelleHOL #Math
- ¿Pueden las máquinas ser creativas? ~ Ramón López de Mántaras. #IA
- Fun with category theory and dynamical systems. ~ Chris Smith (@cdsmithus). #CategoryTheory
- Representable functors: Practical examples. ~ Siddharth Bhat. #Haskell #FunctionalProgramming
- Quantum and classical registers. ~ Dominique Unruh. #ITP #IsabelleHOL
- Proof repair. ~ Talia Ringer. #PhD_Thesis #ITP #Coq
- CoCEC: An automatic combinational circuit equivalence checker based on the interactive theorem prover. ~ Wilayat Khan, Farrukh Aslam Khan, Abdelouahid Derhab, Adi Alhudhaif. #ITP #Coq
- Some formal tools for computer arithmetic: Flocq and Gappa. ~ S. Boldo, G. Melquiond. #ITP #Coq
- A beginner guide to Iris, Coq and separation logic. ~ Elizabeth Dietrich. #ITP #Coq
- Mechanized type safety for gradual information flow. ~ Tianyu Chen, Jeremy G. Siek. #ITP #Agda
- Actions you can handle: Dependent types for AI plans. ~ Alasdair Hill, Ekaterina Komendantskaya, Matthew L. Daggitt, Ronald P. A. Petrick. #ITP #Agda #AI
- Formal synthesis of filter components for use in security-enhancing architectural transformations. ~ David S. Hardin, Konrand L. Slind. #ITP #ACL2
- A combinator library for taxes. ~ Fraser Tweedale (@hackuador). #Haskell #FunctionalProgramming
- Haskell: Applicative. ~ Vlad P. Luchian (@Cstml1). #Haskell #FunctionalProgramming
- Testing smart contracts with QuickCheck. ~ John Hughes. #Haskell #FunctionalProgramming #QuickCheck
- Proof-oriented programming in F*. #ITP #FunctionalProgramming
- Separation logic foundations (Software Foundations, Volume 6). ~ Arthur Charguéraud. #ITP #Coq
- The Natural Number Game. ~ Brent Yorgey. #ITP #LeanProver #Math
- Combinatorics on words basics. ~ Štěpán Holub, Martin Raška, Štěpán Starosta. #ITP #IsabelleHOL
- Graph lemma. ~ Štěpán Holub, Štěpán Starosta. #ITP #IsabelleHOL
- Lyndon words. ~ Štěpán Holub, Štěpán Starosta. #ITP #IsabelleHOL
- Functors and monads for people who have read too many “tutorials”. ~ Jeremy Bowers. #Haskell #FunctionalProgramming
- Tying the Knot in Haskell. ~ Michael Snoyman (@snoyberg). #Haskell #FunctionalProgramming
- Verifying time complexity of binary search using Dafny. ~ Shiri Morshtein et als. #Dafny #Algorithms
- Two new ways to formally prove Dandelin-Gallucci’s theorem. ~ D. Braun, N. Magaud, P. Schreck. #ITP #Coq #Math
- A logic theory pattern for linearized control systems. ~ A. Domenici, C. Bernardeschi. #ITP #PVS
- Fix(ity) me. ~ Veronika Romashkina (@vrom911), Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- Translating LaTeX to Coq: A recurrent neural network approach to formalizing natural language proofs. ~ Benjamin A. Carman. #PhD_Thesis #ITP #Coq #NeuralNetwork
- A novel proof of shuffle: Exponentially secure cut-and-choose. ~ Thomas Haines, Johannes Müller. #ITP #Coq
- Verbatim: A verified lexer generator. ~ D. Egolf, S. Lasser, K. Fisher. #ITP #Coq
- miniF2F: Formal to Formal Mathematics Benchmark consisting of exercise statements from olympiads (AMC, AIME, IMO). #ITP #LeanProver #Math
- A complete bibliography of publications in the Journal of Functional Programming. ~ Nelson H.F. Beebe. #FunctionalProgramming
- Annotations in GHC. ~ Shayne Fletcher. #Haskell #FunctionalProgramming
- Mathematicians answer old question about odd graphs. ~ Kevin Hartnett (@KSHartnett). #Maths
- Silver Oak: Formal specification and verification of hardware, especially for security and privacy. #ITP #Coq
- An AI has disproved five mathematical conjectures with no human help. #AI #Math
- Constructions in combinatorics via neural networks. ~ Adam Zsolt Wagner. #AI #Math #MachineLearning #NeuralNetwork
- Module organization guidelines for Haskell projects. ~ Gabriel Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- A collection of OEIS sequences in Haskell. ~ Debdut Karmakar (@KarmakarDebdut). #Haskell #FunctionalProgramming #Math
- Formally verified simulations of state-rich processes using interaction trees in Isabelle/HOL. ~ Simon Foster, Chung-Kil Hur, Jim Woodcock. #ITP #IsabelleHOL
- Formalization of ring theory in PVS (Isomorphism theorems, principal, prime and maximal ideals, chinese remainder theorem). ~ Thaynara Arielly de Lima et als. #ITP #PVS #Math
- Computable analysis and notions of continuity in Coq. ~ H. Thies, L. Thery, F. Steinberg. #ITP #Coq #Math
- Fixed point construction on complete lattices. ~ Johannes Hölzl et als. #ITP #LeanProver #Math
- Constructions in combinatorics via neural networks. ~ Adam Zsolt Wagner. #MachineLearning #Math
- On preserving the computational content of mathematical proofs: toy examples for a formalising strategy. ~ Angeliki Koutsoukou-Argyraki. #ITP #IsabelleHOL #Math
- Hensel’s Lemma for the p-adic integers (in Isabelle/HOL). ~ Aaron Crighton. #ITP #IsabelleHOL #Math
- The Haskell Phrasebook. ~ Chris Martin (@chris__martin), Julie Moronuki (@argumatronic). #Haskell #FunctionalProgramming
- Haskell MOOC University of Helsinki. ~ Joel Kaasinen, John Lång. #Haskell #FunctionalProgramming
- Counterexamples in type systems. ~ Stephen Dolan. #TypeTheory
- Qué son los algoritmos y cómo aprenden de nosotros. | BBC Mundo. #Algoritmos
- Enigma GPT-2: ¿Puedes distinguir un artículo real de otro falso generado mediante inteligencia artificial simplemente leyendo el resumen?. ~ @Alvy. #IA
- Regreso al futuro de las matemáticas: Si Hipatia levantara la cabeza. ~ Patricia Contreras Tejada (@_PatriciaCT). #Matemáticas
- The Genuine Sieve of Eratosthenes. ~ Jeremy Gibbons (@jer_gib). #Haskell #FunctionalProgramming
- Type-guided development and garden paths. ~ Fraser Tweedale (@hackuador). #Haskell #FunctionalProgramming
- Why you should learn functional programming: Type classes vs. interfaces. ~ @forketyfork #Java #Haskell #FunctionalProgramming
- How mathematicians use homology to make sense of topology. ~ Kelsey Houston-Edwards. #Math
- Automated conjecturing in QuickSpec. ~ Moa Johansson, Nicholas Smallbone. #Haskell #FuncionalProgramming
- Functional algorithms, verified! ~ Tobias Nipkow et als. #eBook #ITP #IsabelleHOL #Algorithms
- Construction of an algebraic number that is not solvable by radicals. ~ Thomas Browning. #ITP #LeanProver #Math
- Slides and exercises of the Lean 4 course “Theorem prover lab: applications in programming languages”. ~ Jakob von Raumer, Sebastian Ullrich (@derKha). #ITP #Lean4
- Lean 4 Metamath verifier. ~ Mario Carneiro. #ITP #Lean4 #Metamath
- The type theory of Lean. ~ Mario Carneiro. #ITP #LeanProver #TypeTheory
- Books: Inquiry-Based Learning Guides. #eBooks #Math
- The beauty of functional languages in Deep Learning — Clojure and Haskell. ~ Jun Wu. #Clojure #Haskell #FunctionalProgramming #DeepLearning
- The IMO Grand Challenge. ~ Daniel Selsam. #ITP #LeanProver
- The trick to avoid deeply-nested error-handling code. ~ Gabriel Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- Regression test selection. ~ Susannah Mansky. #ITP #IsabelleHOL #Math
- Itauto: an extensible intuitionistic SAT solver. ~ Frédéric Besson. #ITP #Coq #Logic #SAT_Solver
- Programming in Z3 by learning to think like a compiler. ~ Marianne Bellotti. #SMT #Z3
- Formalizing the face lattice of polyhedra. ~ Xavier Allamigeon, Ricardo D. Katz, Pierre-Yves Strub. #ITP #Coq #Math
- Lean Together 2021: Panel on teaching with proof assistants. #ITP #LeanProver
- Quick and dirty backpropagation in Haskell. ~ Francesco Mazzoli (@trascendentale). #Haskell #FunctionalProgramming #NeuralNetwork
- Feferman’s virtual book: Logic, Mathematics, and Conceptual Structuralism. ~ Peter Smith (@PeterSmith). #Logic #Math
- A formalised theorem in the partition calculus. ~ Lawrence C. Paulson. #ITP #IsabelleHOL #Logic #Math
- Producing symmetrical facts for lists induced by the list reversal mapping in Isabelle/HOL. ~ Martin Raška, Štěpán Starosta. #ITP #IsabelleHOL
- Reliable reconstruction of fine-grained proofs in a proof assistant. ~ HJ Schurr, M Fleury, M Desharnais. #ITP #IsabelleHOL
- LEO: A programming language for formally verified, zero-knowledge applications. ~ C. Chin et als. #ITP #ACL2
- Formal verification of termination criteria for first-order recursive functions. ~ C.A. Muñoz et als. #ITP #PVS
- Verifying the semantics of disambiguation rules (Using parse tree repairing for showing safety and completeness of associativity and priority rules). ~ L. Miljak. #ITP #Coq
- Trakhtenbrot’s theorem in Coq: Finite model theory through the constructive lens. ~ Dominik Kirst, Dominique Larchey-Wendling. #ITP #Coq #Logic #Math
- Topos: Programming language which can treat set and topology. #Haskell #FunctionalProgramming #Math
- Announcing Ema - Static sites in Haskell. ~ Sridhar Ratnakumar. #Haskell #FunctionalProgramming
- Introduce BIO: A simple streaming abstraction. ~ Dong Han. #Haskell #FunctionalProgramming
- We are happy being poor: El problema de Erdös-Faber-Lovász. ~ Juan Arias de Reyna. #Matemáticas
- A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle. ~ Lawrence C. Paulson. #ITP #IsabelleHOL #Logic #Math
- Verified approximation algorithms. ~ Robin Eßmann, Tobias Nipkow, Simon Robillard. #ITP #IsabelleHOL #Algorithms
- Formalizations of the Church-Rosser theorem in Agda. ~ Andrea Laretto. #ITP #Agda
- Learning from Łukasiewicz and Meredith: Investigations into proof structures (Extended version). ~ Christoph Wernhard, Wolfgang Bibel. #ATP #Prover9 #Logic
- Haskell tutorial: Get started with functional programming. ~ Ryan Thelin. #Haskell #FunctionalProgramming
- Mathematics in the computer. ~ Mario Carneiro. #Math #ITP #LeanProver #Metamath #Metamath_Zero
- A verified decision procedure for orders in Isabelle/HOL. ~ Lukas Stevens, Tobias Nipkow. #ITP #IsabelleHOL #Logic #Math
- Gale-Stewart games (in Isabelle/HOL). ~ Sebastiaan Joosten. #ITP #IsabelleHOL
- Induction and collection up to definable elements: calibrating the strength of parameter-free Δn-minimization. ~ Andrés Cordón. #Logic #Math
- Lógica de programação funcional: Programe em Hope. ~ José Augusto N. G. Manzano, José A. Alonso. #Hope #FunctionalProgramming
- Código fonte do livro “Lógica de programação funcional: Programe em Hope”. ~ José Augusto N. G. Manzano. #Hope #FunctionalProgramming
- Isabelle’s metalogic: Formalization and proof checker. ~ Tobias Nipkow, Simon Roßkopf. #ITP #IsabelleHOL #Logic
- Mathematical structures in dependent type theory. ~ Assia Mahboubi. #ITP #Coq #Math
- Balancing the formal and the informal in user-centred design. ~ M.D. Harrison, P. Masci, J.C. Campos. #ITP #PVS
- A satisfying result. ~ Don Monroe.t#.YIeLaVxXfk0.twitter #Math #CompSci #SATSolvers
- El producto de matrices, en pos de una meta mítica. ~ Kevin Hartnett. #Matemáticas #Computación
- A formalised theorem in the partition calculus. ~ Lawrence C. Paulson. #ITP #IsabelleHOL #Math
- The BKR decision procedure for univariate real arithmetic (in Isabelle/HOL). ~ Katherine Cordwell, Yong Kiam Tan, André Platzer. #ITP #IsabelleHOL #Math
- Grandes ideas de la Filosofía: Lógica. #Lógica
- Formalization in Lean of IMO 2001 Q2. ~ Tian Chen. #ITP #LeanProver #Math #IMO
- Homotopy Type Theory in Isabelle. ~ Joshua Chen. #ITP #IsabelleHOL #HoTT
- Formal verification of pattern matching analyses. ~ Henning Dieterichs. #ITP #LeanProver
- Modeling and proving in computational type theory using the Coq proof assistant. ~ Gert Smolka. #eBook #ITP #Coq
- Formalisation en Coq des algorithmes de filtre numérique calculés en précision finie. ~ Diane Gallois-Wong. #ITP #Coq #Math
- Logic for exact real arithmetic. ~ Helmut Schwichtenberg, Franziskus Wiesnet. #ITP #MinLog #Haskell
- Induction on equality. #Logic #Math #CompSci
- Ackermann’s function in iterative form: A proof assistant experiment. ~ Lawrence C Paulson. #ITP #IsabelleHOL
- Of function instances and abstract syntax. ~ Daniel Brice. #Haskell #FunctionalProgramming
- Type families in Haskell: The definitive guide. ~ Vladislav Zavialov. #Haskell #FunctionalProgramming
- What I wish somebody told me when I was learning Haskell. ~ Evgeny Poberezkin (@epoberezkin). #Haskell #FunctionalProgramming
- 15 graphs you need to see to understand AI in 2021. ~ Eliza Strickland. #AI
- A practical difference between Props and Types in Lean. ~ Mathieu Guay-Paquet. #ITP #LeanProver
- Product of segments of chords in Lean. ~ Manuel Candales. #ITP #LeanProver #Math
- The end of history for programming. ~ Gabriel Gonzalez (@GabrielG439). #Programming
- Simple type theory is not too simple: Grothendieck’s schemes without dependent types. ~ Anthony Bordg, Lawrence Paulson, Wenda Li. #ITP #IsabelleHOL #Math
- Sokoban implementation in Lean for proving solvability / unsolvability. ~ Miroslav Olšák. #ITP #LeanProver
- Continued fractions: Haskell, equational reasoning, property testing, and rewrite rules in action. ~ Chris Smith (@cdsmithus). #Haskell #FunctionalProgramming
- A random tour of typeclass in Haskell. ~ Ong Yi Ren. #Haskell #FunctionalProgramming
- Writing technical documentation with Emacs. #Emacs #OrgMode
- Induction on equality. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- A Coq formalization of Lebesgue integration of nonnegative functions. ~ Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, Micaela Mayero. #ITP #Coq #Math
- A secure and formally verified Linux KVM hypervisor. ~ Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, John Zhuang Hui. #ITP #Coq
- Machine-checked ZKP for NP-relations: Formally verified security proofs and implementations of MPC-in-the-head. ~ José Carlos Bacelar Almeida et als. #EasyCrypt
- EasyCrypt: Computer-aided cryptographic proofs. #EasyCrypt
- EasyCrypt: A tutorial. ~ Gilles Barthe et als. #EasyCrypt
- Online machine learning techniques for Coq: A comparison. ~ Liao Zhang, Lasse Blaauwbroek, Bartosz Piotrowski, Prokop Černý, Cezary Kaliszyk, Josef Urban. #ITP #Coq #MachineLearning
- Balanced Academic Curriculum: Looking for an optimal solution with metaheuristics and functional programming. ~ José Miguel Rubio, Cristian Vidal-Silva, Luis Carter, Miguel Tupac-Yupanqui. #Haskell #FunctionalProgramming
- Poltergeist types. ~ G. Allais. #Haskell #FunctionalProgramming
- Functional flocks. ~ Eddie Jones. #Haskell #FunctionalProgramming
- Checking for uncheckable: optional constraints. #Haskell #FunctionalProgramming
- Type theory. ~ Thierry Coquand. #TypeTheory
- More on types, typeclasses and the foldable typeclass. ~ Marty Stumpf. #Haskell #FunctionalProgramming
- The movement principle. ~ Chris Done (@christopherdone). #Haskell #FunctionalProgramming
- Arrows, through a different lens. ~ Juan Raphael Diaz Simões. #Haskell #FunctionalProgramming
- Ad-hoc interpreters with capability. ~ Gaël Deest, Andreas Herrmann. #Haskell #FunctionalProgramming
- Lisp & the Web (Introductory reference guide to creating Web applications with Common Lisp & Google Compute Engine). ~ Ashok Khanna. #CommonLisp #Programming
- Mathematician disproves 80-year-old algebra conjecture. ~ Erica Klarreich (@EricaKlarreich). #Math
- Formalization in Lean of IMO 1977 Q6. ~ Tian Chen. #ITP #LeanProver #Math
- Heron’s Formula (in Lean). ~ Matt Kempster. #ITP #LeanProver #Math
- ¿Para qué sirven las matemáticas? ~ Marta Macho Stadler (@MartaMachoS). #Matemáticas
- Topological semantics for paraconsistent and paracomplete logics in Isabelle/HOL. ~ David Fuenmayor. #ITP #IsabelleHOL #Logic
- The working programmer’s guide to setting up Haskell projects. ~ Jonas Carpay (@jonascarpay). #Haskell #FunctionalProgramming
- Things I wish someone had explained about functional programming (Part 1: Faulty assumptions). ~ James Sinclair (@jrsinclair). #FunctionalProgramming
- Things I wish someone had explained about functional programming (Part 2: Algebraic structures). ~ James Sinclair (@jrsinclair). #FunctionalProgramming
- Things I wish someone had explained about functional programming (Part 3: Type classes). ~ James Sinclair (@jrsinclair). #FunctionalProgramming
- Things I wish someone had explained about functional programming (Part 4: Algebraic data types). ~ James Sinclair (@jrsinclair). #FunctionalProgramming
- Generative art using Haskell. ~ David Luposchainsky (@quch3n). #Haskell #FunctionalProgramming
- Programar es de pobres: por qué el mundo del ‘software’ está roto en España. ~ Eduardo Manchón (@eduardomanchon). #Programación #Informática
- Intuitionistic tautology (`itauto`) decision procedure in Lean. ~ Mario Carneiro. #ITP #LeanProver #Logic
- First-order natural deduction in Agda. ~ Louis Warren. #ITP #Agda #Logic
- The Dao of functional programming. ~ Bartosz Milewski (@BartoszMilewski). #Haskell #FunctionalProgramming #CategoryTheory
- The beauty of programming. ~ Linus Torvalds. #Programming
- Gnus Emacs as email client in IMAP with ProtonMail. ~ Joseph Vidal-Rosset. #Emacs #ProtonMail
- Products and sums, named and anonymous. ~ Ömer Sinan Ağacan. #Haskell #FunctionalProgramming
- Connecting constructive notions of ordinals in Homotopy Type Theory. ~ Nicolai Kraus, Fredrik Nordvall Forsberg, Chuangjie Xu. #ITP #Agda #Logic #Math #HoTT
- Propuesta de enseñanza de la formalización de la Matemática utilizando un asistente de pruebas en estudiantes de la Licenciatura en Ciencias de la Computación. ~ Daniel Severın, Alejandro Hernández. #ITP #Coq
- Formalization in Lean of IMO 2008 Q3. ~ Manuel Candales. #ITP #LeanProver #Math
- NaturalProofs: Mathematical theorem proving in natural language. ~ Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, Kyunghyun Cho. #ATP #MachineLearning
- Type theory from the perspective of Artificial Intelligence. ~ David McAllester. #TypeTheory #AI
- A review of formal methods applied to machine learning. ~ Caterina Urban, Antoine Miné. #MachineLearning #FormalMethods
- Prolog meta-interpreters. ~ Markus Triska (@MarkusTriska). #Prolog #LogicProgramming
- Grothendieck’s Schemes in Algebraic Geometry. ~ Anthony Bordg, Lawrence Paulson, Wenda Li. #ITP #IsabelleHOL #Math
- Continued fractions in Haskell. ~ Chris Smith (@cdsmithus).l#P7oZc6pbWBK6wRaBBMm0goA #Haskell #FunctionalProgramming #Math
- Algorithmic puzzle: Continuous increasing subsequences. ~ Boro Sitnikovski (@BSitnikovski). #Haskell #FunctionalProgramming
- How to replace Proxy with AllowAmbiguousTypes. ~ Gabriel Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- Formalization in Lean of IMO 2008 Q4. ~ Manuel Candales. #ITP #LeanProver #Math
- Giml’s type inference engine. ~ Gil Mizrahi (@_gilmi). #Haskell #FunctionalProgramming
- Scrabbλe: A one- or two-player implementation of Scrabble for teaching functional programming. ~ Jim Burton. #eBook #Haskell #FunctionalProgramming
- Intuitionistic NF Set Theory. ~ Michael Beeson. #Logic #Math #ITP #LeanProver
- Girard’s paradox. ~ Mario Carneiro. #ITP #LeanProver #Logic #Math
- Formalization in Lean of IMO 2005 Q3. ~ Manuel Candales. #ITP #LeanProver #Math
- Formalization in Lean of IMO 2008 Q2. ~ Manuel Candales. #ITP #LeanProver #Math
- Formalization in Lean of IMO 2011 Q5. ~ Alain Verberkmoes. #ITP #LeanProver #Math
- Capturing number theory in Haskell. ~ Boro Sitnikovski (@BSitnikovski). #Haskell #FunctionalProgramming #Math
- Auto build and publish emacs org configuration as a website. ~ Erick Navarro (@erickgnavar). #Emacs
- Division by zero in Logic and Computing. ~ Jan Bergstra. #Logic #Math #CompSci
- Induction, and inductive types. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Doing mathematics with simple types: Infinitary combinatorics in Isabelle/HOL. ~ Lawrence Paulson. #ITP #IsabelleHOL #Math
- An evaluation of the Archive of Formal Proofs. ~ Carlin MacKenzie, Jacques Fleuriot, James Vaughan. #ITP #IsabelleHOL
- Default exception handler in Haskell. ~ Taylor Fausak. #Haskell #FunctionalProgramming
- Emacs org-mode examples and cookbook. ~ Eric H. Neilsen, Jr. #Emacs
- ProverX: Rewriting and extending Prover9. ~ Ivo Robert. #PhDThesis #ATP #Prover9
- SSProve: A foundational framework for modular cryptographic proofs in Coq. ~ Carmine Abate et als. #ITP #Coq
- Código fonte do livro “Lógica de programação funcional: Pense em Hope”. ~ José Augusto N. G. Manzano. #Hope #FunctionalProgramming
- Dependent stringly-typed programming. ~ @anormalform. #Agda #FunctionalProgramming #ITP
- Designing command line interfaces in Haskell. ~ Stephan Schiffels (@stschiff). #Haskell #FunctionalProgramming
- Category theory illustrated. ~ Boris Marinov (@AlexanderKatt). #CategoryTheory
- #SEP: Category theory. ~ Jean-Pierre Marquis. #CategoryTheory #Logic #Math
- Abstract modeling of systems communication in constructive cryptography using CryptHOL. ~ D. Basin, A. Lochbihler, U. Maurer, S.R. Sefidgar. #ITP #IsabelleHOL
- Verified software units. ~ Lennart Beringer. #ITP #Coq
- linear-logic: a version of intuitionistic linear logic on top of linear Haskell. ~ Edward Kmett (@kmett). #Haskell #FunctionalProgramming #Logic
- Do judge a test by its cover: Combining combinatorial and property-based testing. ~ Harrison Goldstein, John Hughes, Leonidas Lampropoulos, Benjamin C. Pierce. #Haskell #FunctionalProgramming
- Varieties of mathematical understanding. ~ Jeremy Avigad. #ITP #Math
- A formal proof of the Lax equivalence theorem for finite difference schemes. ~ Mohit Tekriwal, Karthik Duraisamy, Jean-Baptiste Jeannin. #ITP #Coq #Math
- Verifying min-plus Computations with Coq (extended version with appendix). ~ Lucien Rakotomalala, Pierre Roux, Marc Boyer. #ITP #Coq
- For a few dollars more: Verified fine-grained algorithm analysis down to LLVM. ~ Maximilian P.L. Haslbeck, Peter Lammich. #ITP #IsabelleHOL
- Certifying proofs in the first-order theory of rewriting. ~ Fabian Mitterwallner, Alexander Lochmann, Aart Middeldorp, Bertram Felgenhauer. #ITP #IsabelleHOL
- Limits of real numbers in the binary signed digit representation. ~ Franziskus Wiesnet, Nils Köpp. #Haskell #FunctionalProgramming #Math
- El Análisis complejo y una exploración de los conjuntos de Mandelbrot y Julia con código abierto. ~ @Alvy. #Matemáticas #Programación
- Análisis complejo (Una introducción visual e interactiva). ~ Juan Carlos Ponce Campuzano. #eBook #Matemáticas
- Lógica de programação funcional: Pense em Hope (Exercícios de programação funcional com Hope). ~ José Augusto N. G. Manzano, José A. Alonso Jiménez, María J. Hidalgo Doblado. #eBook #Hope #FunctionalProgramming
- Strong typing. ~ M-J. Dominus (1999). #Programming
- Why functional programming matters. ~ John Hughes. #FunctionalProgramming
- The dawning of a new era in applied mathematics. ~ Weinan E. #Math via @emulenews
- La inteligencia artificial nunca será como la humana. ~ Ramón López de Mántaras. #IA
- EmacsTutorial01: Semantic keybindings to memorize hundreds of keys instantly. #Emacs
- SSProve: A foundational framework for modular cryptographic proofs in Coq. ~ C. Abate, P.G. Haselwarter, E. Rivas, A. Van Muylder, T. Winterhalter, C. Hritcu, K. Maillard, B. Spitters. #ITP #Coq
- A well-known representation of monoids and its application to the function “vector reverse”. ~ Wouter Swierstra. #Agda #FunctionalProgramming
- Functional Pearl: Witness me - Constructive arguments must be guided with concrete witness. ~ Hiromi Ishii. #Haskell #FunctionalProgramming
- Combining folds using semigroups. ~ Luc Tielen (@luctielen). #Haskell #FunctionalProgramming
- Many faces of internal functions. ~ Veronika Romashkina (@vrom911). #Haskell #FunctionalProgramming
- Alectryon: a collection of tools for writing technical documents that mix Coq code and prose. ~ Clément Pit-Claudel. #ITP #Coq via @jjcarett2
- Building a personal website with org-mode. ~ Rafael Fernández (@ereslibre). #Emacs #OrgMode
- Weblorg: A static HTML generator for Emacs and Org-Mode. #Emacs #OrgMode
- An introduction to typeclass metaprogramming. ~ Alexis King (@lexi_lambda). #Haskell #FunctionalProgramming
- How to build hybrid Haskell and Java programs. ~ Facundo Domínguez, Andreas Hermann. #Haskell #Java
- Course: Programming languages. ~ Zach Tatlock, Leonardo De Moura. #CompSci #ITP #LeanProver
- Coq fundamentals. ~ Zach Tatlock. #ITP #Coq
- Leaning into Spivak’s calculus. ~ Tom Houle (@_tomhoule). #ITP #LeanProver #Math
- IsarStep: A benchmark for high-level mathematical reasoning. ~ W. Li, L. Yu, Y. Wu, L.C. Paulson. #ITP #IsabelleHOL #Math #MachineLearning
- Formal verification of Zagier’s one-sentence proof. ~ Guillaume Dubach, Fabian Muehlboeck. #ITP #Coq #Math
- Programmer learning list. ~ Michael Snoyman (@snoyberg). #Programming
- Install GHC, Cabal and Haskell Language Server IDE on Windows 10. ~ Will Gould. #Haskell #FunctionalProgramming
- Diagrams for Penrose tiles. ~ Chris Reade. #Haskell #FunctionalProgramming #Math
- Quantum projective measurements and the CHSH inequality in Isabelle/HOL. ~ Mnacho Echenim, Mehdi Mhalla. #ITP #IsabelleHOL
- Reasoning about the garden of forking paths. ~ Yao Li, Li-yao Xia, Stephanie Weirich. #ITP #Coq
- Plotting in a formally verified way. ~ Guillaume Melquiond. #ITP #Coq
- Classical (co)recursion: Programming. ~ Paul Downen, Zena M. Ariola. #Agda #Scheme #Python #Java
- Partial evaluation of logic programs in vector spaces. ~ Chiaki Sakama, Hien D. Nguyen, Taisuke Sato, Katsumi Inoue. #LogicProgramming #Math
- Verified quantitative analysis of imperative algorithms. ~ Maximilian P.L. Haslbeck. #PhDThesis #ITP #IsabelleHOL
- Constructive cryptography in HOL: the communication modeling aspect. ~ Andreas Lochbihler, S. Reza Sefidgar. #ITP #IsabelleHOL
- Introduction to lambda calculus. ~ John Lång. #LambdaCalculus #FunctionalProgramming
- Pioneers linking Math and Computer Science win the Abel Prize. ~ Kevin Hartnett (@KSHartnett). #Math #CompSci
- László Lovász: Working mathematical miracles. ~ Marianne Freiberger. #Math #CompSci
- Avi Wigderson: “It’s good to have hard problems”. ~ Rachel Thomas. #Math #CompSci
- Cryptography and pseudorandomness. ~ Avi Wigderson. #Math #CompSci
- Mathematics and computation (A theory revolutionizing technology and science). ~ Avi Wigderson. #eBook #Math #CompSci via @mbelcrypt_vasco
- The Agda universal algebra library, Part 2: Structure. ~ William DeMeo. #ITP #Agda #Math
- Formal methods for the informal engineer (Tutorial 2: The Coq theorem prover). ~ Cody Roux. #ITP #Coq
- The bottom of the Haskell Pyramid. ~ Gil Mizrahi (@_gilmi). #Haskell #FunctionalProgramming
- The history and concept of mathematical proof. ~ Steven G. Krantz. #Logic #Math via @mathematicsprof
- Historia visual de los lenguajes de programación. ~ Jordi Cabot (@ingdesoftware). #Programación vía @fernand0
- Synthetic undecidability and incompleteness of first-order axiom systems in Coq. ~ Dominik Kirst, Marc Hermes. #ITP #Coq #Logic #Math
- Functional Pearls: Heterogeneous binary random-access lists. ~ Wouter Swierstra. #Agda #FunctionalProgramming
- Haskell knowledge map. ~ Veronika Romashkina (@vrom911), Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- Evaluación perezosa en Python. Parte 5: Formalización de la secuencia perezosa. ~ Chema Cortés (@chemacortes). #Python #Programación
- Formalising mathematics: workshop 8 (group cohomology). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Two algorithms based on modular arithmetic: lattice basis reduction and Hermite normal form computation (in Isabelle/HOL). ~ Ralph Bottesch, Jose Divason, Rene Thiemann. #ITP #IsabelleHOL #Math
- Hyperfunctions. ~ Donnacha Oisín Kidney (@oisdk). #Haskell #FunctionalProgramming
- List of formulae involving π. #Math via @mathematicsprof
- (((Wait a moment .) .) .) - Composing functions with multiple arguments. ~ Philip K. Dick. #Haskell #FunctionalProgramming
- Flycheck and HLS. ~ Magnus Therning. #Emacs #LSPmode #Haskell #HLS via @jneira
- The Hermite–Lindemann–Weierstraß transcendence theorem (in Isabelle/HOL). ~ Manuel Eberl. #ITP #IsabelleHOL #Math
- Order theory for computer scientists. ~ Matt Might (@mattmight). #Math #CompSci #Haskell #FunctionalProgramming via @CompSciFact
- What is mathematics? ~ Alec Wilkinson. #Math
- An infinite descent into pure mathematics. ~ Clive Newstead. #eBook #Math
- How to write proofs: a quick guide. ~ Eugenia Cheng (@DrEugeniaCheng). #Logic #Math
- Emacs y lsp-mode. #Emacs #LSPmode
- The Agda universal algebra library - Part 1: Foundation (Equality, extensionality, truncation, and dependent types for relations and algebras). ~ William DeMeo. #ITP #Agda #Math
- A replication crisis in mathematics? ~ Anthony Bordg. #Math #ITP
- Contrastando dos códices matemáticos iluminados. ~ Ángel Requena Fraile. #Matemáticas
- Programming and proving in Agda. ~ Jesper Cockx (@dregntael). #ITP #Agda #FunctionalProgramming #Haskell
- Formal verification of authenticated, append-only skip lists in Agda: Extended version. ~ Victor Cacciari Miraldo, Harold Carr, Mark Moir, Lisandra Silva, Guy L. Steele Jr. #ITP #Agda
- Symbolic and automatic differentiation of languages. ~ Conal Elliott. #ITP #Agda
- Quantum projective measurements and the CHSH inequality (in Isabelle/HOL). ~ Mnacho Echenim. #ITP #IsabelleHOL
- Bernoulli polynomials (in Lean prover). ~ Ashvni Narayanan. #ITP #LeanProver #Math
- Pruning unused Haskell dependencies. ~ Dan Fithian. #Haskell #FunctionalProgramming
- Logical foundations: Personal perspective. ~ Yuri Gurevich. #Logic #Math #CompSci
- Recreational Mathematics. ~ Paul Yiu. #eBook #Math
- Five principles for programming languages for learners. ~ Mark Guzdial (@guzdial). #CompSci #Teaching #Programming
- Fifteen awesome cross-platform math apps. ~ Jason Polak. #Math #CompSci #Programming
- Formalizing graph trail properties in Isabelle/HOL. ~ Laura Kovacs, Hanna Lachnitt, Stefan Szeider. #ITP #IsabelleHOL #Math
- Training a first-order theorem prover from synthetic data. ~ Vlad Firoiu, Eser Aygun, Ankit Anand, Zafarali Ahmed, Xavier Glorot, Laurent Orseau, Lei Zhang, Doina Precup, Shibl Mourad. #ATP #MachineLearning
- Measuring mathematical problem solving with the MATH dataset. ~ Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, Jacob Steinhardt. #MachineLearning #ITP #Math
- Theorems for free from separation logic specifications. ~ Lars Birkedal et als. #ITP #Coq
- Mereology (in Isabelle/HOL). ~ Ben Blumson. #ITP #IsabelleHOL #Logic
- Teaching automated reasoning and formally verified functional programming in Agda and Isabelle/HOL. ~ Asta Halkjær From, Jørgen Villadsen. #Logic #FunctionalProgramming #ITP #Agda #IsabelleHOL
- Formalization and verification of reconfigurable discrete-event system using model driven engineering and Isabelle/HOL. ~ S. Soualah, Y. Hafidi, M. Khalgui, A. Chaoui, L. Kahloul. #ITP #IsabelleHOL
- Generalized universe hierarchies and first-class universe levels. ~ András Kovács. #ITP #Agda
- Roosterize: Suggesting lemma names for Coq verification projects using deep learning. ~ Pengyu Nie, Karl Palmskog, Junyi Jessy Li, Milos Gligoric. #ITP #Coq #DeepLearning
- Neural theorem proving in Lean using Proof Artifact Co-training and language models. ~ Jason Rute. #ITP #LeanProver #MachineLearning
- Neural theorem proving in Lean using Proof Artifact Co-training and language models. [Slides] ~ Jason Rute. #ITP #LeanProver #MachineLearning
- Proving theorems about regular languages and DFAs in Lean. ~ Noam Atar. #ITP #LeanProver
- Boolean rings (in Lean prover). ~ Bryan Gin-ge Chen. #ITP #LeanProver #Math
- HGeometry: Computational Geometry in Haskell. #Haskell #FunctionalProgramming #Math
- Formalising mathematics: workshop 7 (quotients). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Tutorial: Cellular automata and comonads. ~ Siddharth Bhat. #Haskell #FunctionalProgramming
- These are the 10 toughest math problems ever solved. ~ Dave Linkletter. #Math
- L’informatique, quelques questions pour se fâcher entre amis. ~ Serge Abiteboul, Inria Paris, Gilles Dowek. #CompSci
- A brief history of Logic. ~ Moshe Y. Vardi (2003). #Logic #Math #CompSci via @prathyvsh
- Experimental mathematics approach to Gauss diagrams realizability. ~ A. Khan, A. Lisitsa, A. Vernitski. #Prolog #LogicProgramming #Math
- Short introduction to Topology (for Computer Science grad students). ~ Mark Jason Dominus (2010). #Math via @CompSciFact
- Using Nix for Haskell development in Emacs with LSP. ~ Jonas Collberg. #Haskell #Emacs
- Towards a notion of basis for knowledge-based systems - Applications. ~ Gonzalo A. Aranda, Joaquín Borrego, Juan Galán, Daniel Rodríguez. #Math #CompSci
- [[https://youtu.be/UnYrWuOzOlc][AI and Theorem Proving [Video]]]. ~ Josef Urban. #ATP #ITP #MachineLearning #AI
- [[https://cmsa.fas.harvard.edu/wp-content/uploads/2021/01/Urbanslides.pdf][AI and Theorem Proving [Slides]]]. ~ Josef Urban. #ATP #ITP #MachineLearning #AI
- [[https://youtu.be/Y0hpHm74FYs][Language modeling for mathematical reasoning [Video]]]. ~ Christian Szegedy. #Logic #Math #AI
- [[https://cmsa.fas.harvard.edu/wp-content/uploads/2021/01/Language-modeling-for-Mathematical-Reasoning-.pdf ][Language modeling for mathematical reasoning [Slides]]]. ~ Christian Szegedy. #Logic #Math #AI
- Arrows Zoo. ~ Veronika Romashkina (@vrom911), Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- Introducing my fall 1987 course on Mathematical Methodology. ~ Edsger W.Dijkstra. #Math
- The sunflower lemma of Erdős and Rado (in Isabelle/HOL). ~ René Thiemann. #ITP #IsabelleHOL #Math
- 12² beautiful mathematical theorems with short proofs. ~ Jörg Neunhäuserer. #Math via @@lizardbill
- Proofs in Mathematics. ~ Alexander Bogomolny. #Math
- Proof verification technology and elementary physics. ~ Ernest Davis. #FormalVerification #Physics
- How I use Dante. #Haskell #FunctionalProgramming #Emacs
- Computational logic in the first semester of computer science: An experience report. ~ David M. Cerna et als. #Logic #CompSci
- Certifying choreography compilation. ~ Luís Cruz-Filipe, Fabrizio Montesi, Marco Peressotti. #ITP #Coq
- Formalising mathematics: workshop 6 (limits). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- A verified imperative implementation of B-trees (in Isabelle/HOL). ~ Niels Mündle. #ITP #IsabelleHOL
- Totality. ~ Veronika Romashkina (@vrom911), Dmitrii Kovanikov (@ChShersh). #Haskell #FunctionalProgramming
- Evaluación perezosa en Python. Parte 4: Evaluación perezosa avanzada. ~ Chema Cortés (@chemacortes). #Python #Programación
- Formal Puiseux series (in Isabelle/HOL). ~ Manuel Eberl. #ITP #IsabelleHOL #Math
- PureScript and Haskell. ~ Drew Olson. #Haskell #PureScript #FunctionalProgramming
- The Burali-Forti argument in HoTT/UF. ~ Martin Escardo. #Logic #Math #HoTT
- Rerecorded introduction to the Algebra of Programming research group. ~ Jeremy Gibbons (@jer_gib). #CompSci #Haskell #FunctionalProgramming
- Course: Principles of Programming Languages. ~ Gregor Richards. #Programming #Haskell #Prolog #Pascal #Smalltalk #Erlang #C
- Knowledge graphs. ~ Claudio Gutierrez, Juan F. Sequeda. #AI #Logic #CompSci
- The decline of computers as a general purpose technology. ~ Neil C. Thompson, Svenja Spanuth. #CompSci
- 50 years of Pascal. ~ Niklaus Wirth. #Pascal #Programming #CompSci
- Inductive logic programming at 30. ~ Andrew Cropper, Sebastijan Dumančić, Richard Evans, Stephen H. Muggleton. #ILP #LogicProgramming #MachineLearning
- A formal proof of safegcd bounds. ~ Russell O’Connor, Andrew Poelstra. #ITP #Coq
- Formalized Haar measure. ~ Floris van Doorn. #ITP #LeanProver #Math
- A variant of Wagner’s theorem based on combinatorial hypermaps. ~ Christian Doczkal. #ITP #Coq #Math
- IPDL: A simple framework for formally verifying distributed cryptographic protocols. ~ Greg Morrisett, Elaine Shi, Kristina Sojakova, Xiong Fan, Joshua Gancher. #ITP #Coq
- Category theory as an excuse to learn type theory. ~ Eduardo Ochs, Selana Ochs. #CategoryTheory #TypeTheory
- Introducción al sistema de tipos en Haskell. ~ Manuel Soto (@manu_msr). #Haskell #FunctionalProgramming
- Type classes: de aprendiz a maestro. ~ Alejandro Serrano (@trupill). #Haskell #FunctionalProgramming
- Formalizing groups in type theory. ~ Farida Kachapova. #Logic #Math #ITP
- Formalising mathematics: workshop 5 (filters). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Filter (mathematics). ~ Wikipedia. #Math
- Filters in topology. ~ Wikipedia. #Math
- Set theory (in “The Stanford Encyclopedia of Philosophy”). ~ Joan Bagaria (@BagariaJoan). #Logic #Math
- Set theory. ~ Joan Bagaria (@BagariaJoan). #Logic #Math
- Models of set theory. ~ Joan Bagaria (@BagariaJoan). #Logic #Math #Set_theory
- The mathematics of boolean algebra (in “The Stanford Encyclopedia of Philosophy”). ~ J. Donald Monk. #Logic #Math
- Reflections on using Haskell for my startup. ~ Alistair Burrowes (@AlistairBuzz). #Haskell #FunctionalProgramming
- Formalizing relations in type theory. ~ Farida Kachapova. #Logic #Math
- Course: Interactive theorem proving and applications. ~ Burkhart Wolff. #ITP #IsabelleHOL
- #SEP: Algebra (in “The Stanford Encyclopedia of Philosophy”). ~ Vaughan Pratt. #Math
- Evaluación perezosa en Python. Parte 3: Cachés y memoización. ~ Chema Cortés (@chemacortes). #Python #Programación
- Patterns, predictions, and actions: A story about machine learning. ~ Moritz Hardt, Benjamin Recht. #eBook #MachineLearning
- A geometric view of the square root algorithm. ~ A. Grzesina. #Math #Algorithms
- Study of Isabelle/HOL on formal algorithm analysis and code generation. ~ Haitao Wang, Lihua Song. #ITP #IsabelleHOL
- Cantor’s theorem without reductio ad absurdum. ~ Christoph Benzmüller, David Fuenmayor. #ITP #IsabelleHOL #Logic #Math
- #SEP: Fallacies. ~ Hans Hansen. #Logic
- #SEP: The algebra of logic tradition. ~ Stanley Burris, Javier Legris. #Logic
- Kruskal’s algorithm implemented in Clojure. ~ Atabey Kaygun (@Atabey_Kaygun). #Clojure #Algorithms
- Kruskal’s algorithm in Common Lisp. ~ Atabey Kaygun (@Atabey_Kaygun). #CommonLisp #Algorithms
- Value-oriented legal argumentation in Isabelle/HOL. ~ Christoph Benzmüller, David Fuenmayor. #ITP #IsabelleHOL
- Unsolvability of the quintic formalized in dependent type theory. ~ Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub. #ITP #Coq #Math
- Machine-checked computer-aided mathematics. ~ Assia Mahboubi. #ITP #Coq #Math
- A study of continuous vector representations for theorem proving. ~ StanisŁaw PurgaŁ, Julian Parsert, Cezary Kaliszyk. #ATP #MachineLearning
- Decades-old computer science conjecture solved in two pages. ~ Erica Klarreich (@EricaKlarreich). #Math #CompSci
- Hall’s Marriage Theorem in Lean. ~ Alena Gusakov, Bhavik Mehta, Kyle Miller. #ITP #LeanProver #Math
- Liouville’s theorem in Lean. ~ Jujian Zhang. #ITP #LeanProver #Math
- Formalization in Lean of IMO (International Mathematical Olympiads) 1987, Q1. ~ Yury Kudryashov. #ITP #LeanProver #Math
- A formal proof of modal completeness for provability logic. ~ Marco Maggesi, Cosimo Perini Brogi. #ITP #HOL_Light #Logic
- HaskellRank: HackerRank in Haskell. ~ @tsoding. #Haskell #FunctionalProgramming
- Evaluación perezosa en Python - Parte 2: Secuencias infinitas. ~ Chema Cortés (@chemacortes). #Python #Programming
- The laws of large numbers (in Isabelle/HOL). ~ Manuel Eberl (@pruvisto). #ITP #IsabelleHOL #Math
- Formalising mathematics: workshop 4 (topology). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Learning equational theorem proving. ~ Jelle Piepenbrock, Tom Heskes, Mikoláš Janota, Josef Urban. #ATP #MachineLearning
- An algebra of properties of binary relations. ~ Jochen Burghardt. #Logic #Math #ATP #Eprover
- IMO 2013 Q1 in Lean. ~ David Renshaw. #ITP #LeanProver #Math
- Certifying differential equation solutions from computer algebra systems in Isabelle/HOL. ~ Thomas Hickman, Christian Pardillo Laursen, Simon Foster. #ITP #IsabelleHOL #Math
- Vampire with a brain is a good ITP hammer. ~ Martin Suda. #Vampire #ATP #ITP #MachineLearning
- Modelling puzzles in First Order Logic. ~ Adrian Groza. #Logic #ATP #Prover9
- Evaluación perezosa en Python. Parte 1: Introducción a la evaluación perezosa. ~ Chema Cortés (@chemacortes). #Python #Programming
- The Ramanujan Machine is an intellectual fraud. #AI #Math
- A verified decision procedure for univariate real arithmetic with the BKR algorithm. ~ Katherine Cordwell, Yong Kiam Tan, André Platzer. #ITP #IsabelleHOL #Math
- A formal proof of the independence of the continuum hypothesis. ~ Jesse Michael Han, Floris van Doorn. #ITP #LeanProver #Logic #Math
- Automated propositional sequent proofs in your browser with Tau Prolog. Philip Zucker (@SandMouth). #ATP #Logic #Prolog #LogicProgramming
- Emacs and org-mode for reproducible research. (Organize your research in plain text!). ~ Thibault Lestang. #Emacs #OrgMode
- Writing the Emacs configuration script in org-mode: a simple example of literate programming. ~ Hsin-Hao Yu (@HsinHaoYu). #Emacs
- Folds are constructor substitution. ~ Gabriel Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- Model-based testing of networked applications. ~ Yishuai Li, Benjamin C. Pierce, Steve Zdancewic. #ITP #Coq
- Verifying the Hashgraph consensus algorithm. ~ Karl Crary. #ITP #Coq
- AI maths whiz creates tough new problems for humans to solve. ~ Davide Castelvecchi. #AI #Math #ITP
- The Ramanujan Machine (an algorithmic approach to discover new mathematical conjectures). #AI #Math
- The Ramanujan Machine: automatically generated conjectures on fundamental constants. ~ Gal Raayoni, Shahar Gottlieb, George Pisha, Yoav Harris, Yahel Manor, Uri Mendlovic, Doron Haviv, Yaron Hadad, Ido Kaminer. #AI #Math
- GHC reading guide (Exploring entrances and mental models to the source code). ~ Takenobu Tani. #Haskell #FunctionalProgramming
- Computer Science by Example. #CompSci #Programming
- Formalising a Turing-complete choreographic language in Coq. ~ Luís Cruz-Filipe, Fabrizio Montesi, Marco Peressotti. #ITP #Coq
- A formalization of Dedekind domains and class groups of global fields. ~ Anne Baanen, Sander R. Dahmen, Ashvni Narayanan, Filippo A. E. Nuccio Mortarino Majno di Capriglio. #ITP #LeanProver #Math
- New random interface. ~ Alexey Kuleshevich. #Haskell #FunctionalProgramming
- Formalising mathematics: Workshop 3 (Limits of sequences). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- What is a filter? How some computer scientists think about limits. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- What is a uniform space? How some computer scientists think about completions. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Superconnected left quasigroups and involutory quandles. ~ Marco Bonatto. #ATP #Prover9 #Math
- Haskell’s @ symbol - Type application. ~ Zac Wood. #Haskell #FunctionalProgramming
- The working programmer’s guide to setting up Haskell projects. ~ Jonas Carpay (@jonascarpay). #Haskell #FunctionalProgramming
- El cifrado de los monjes cistercienses: de 0000 a 9999 con «símbolos raros». ~ @Alvy. #Matemáticas
- Tarski’s parallel postulate implies the 5th postulate of Euclid, the postulate of Playfair and the original parallel postulate of Euclid. ~ Roland Coghetto. #ITP #IsabelleHOL #Math
- Solution to the xkcd Blue Eyes puzzle (in Isabelle/HOL). ~ Jakub Kądziołka. #ITP #IsabelleHOL
- Proving me wrong (How QuickCheck destroyed my favourite theory). ~ Thomas Mahler. #Haskell #FunctionalProgramming #QuickCheck
- Verification of dynamic bisimulation theorems in Coq. ~ R Fervari, F Trucco, B Ziliani. #ITP #Coq
- Tutorial on implementing Hoare logic for imperative programs in Haskell. ~ Boro Sitnikovski. #Haskell #FunctionalProgramming
- Deriving monadic quicksort (Declarative Pearl). ~ Shin-Cheng Mu, Tsung-Ju Chiang. #Haskell #FunctionalProgramming
- Paul Cohen, el matemático que por resolver un problema terminó creando dos mundos. ~ Dalia Ventura. #Matemáticas
- HELIX: From math to verified code. ~ Vadim Zaliva. #PhD_Thesis #ITP #Coq #Math
- Implementing the decomposition of soundness proofs of abstract interpreters in Coq. ~ Jens de Waard. #MSc_Thesis #ITP #Coq
- Longest segment of balanced parentheses: an exercise in program inversion in a segment problem (Functional Pearl). ~ Shin-Cheng Mu, Tsung-Ju Chiang. #Haskell #FunctionalProgramming
- A greedy algorithm for dropping digits (Functional Pearl). ~ Richard Bird, Shin-Cheng Mu. #Haskell #FunctionalProgramming
- Formalising mathematics: Workshop 2 (Groups and subgroups). ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Building a passphrase generator in Haskell. ~ Mathias Jean Johansen. #Haskell #FunctionalProgramming
- What do we mean by equality? ~ Kevin Buzzard (@XenaProject). #Logic #Math
- ¿Cuántos infinitos existen?️ El teorema de Cantor. ~ Urtzi Buijs (@UrtziBuijs). #Matemáticas
- IMO 2013 Q5 in Lean. ~ David Renshaw. #ITP #LeanProver #Math
- Evolution of artificial intelligence languages, a systematic literature review. ~ Emmanuel Adetiba, Temitope John, Adekunle Akinrinmade, Funmilayo Moninuola, Oladipupo Akintade, Joke Badejo. #AI #Programming
- Edición de textos científicos con LaTeX. (Composición, gráficos, Inkscape, Tikz y presentaciones Beamer). ~ Alexánder Borbón, Walter Mora. #LaTeX
- IMO 2011 Q3 in Lean. ~ David Renshaw. #ITP #LeanProver #Math
- Teaching algorithms and data structures with a proof assistant. ~ Tobias Nipkow. #ITP #IsabelleHOL
- 2-Adjoint equivalences in Homotopy Type Theory. ~ Daniel Carranza, Jonathan Chang, Krzysztof Kapulkin, Ryan Sandford. #ITP #LeanProver #HoTT
- The Agda universal algebra library and Birkhoff’s theorem in Martin-Löf dependent type theory. ~ William DeMeo. #ITP #Agda #Math
- Formal verification of authenticated, append-only skip lists in Agda. ~ Victor Cacciari Miraldo, Harold Carr, Mark Moir, Lisandra Silva, Guy L. Steele Jr. #ITP #Agda
- A Haskell implementation of the Lyness-Moler’s numerical differentiation algorithm. ~ Weng Kin Ho, Chu Wei Lim. #Haskell #FunctionalProgramming #Math
- Let’s not dumb down the history of computer science. ~ Donald E. Knuth, Len Shustek. #CompSci
- Formalising mathematics: workshop 1. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Sums of consecutive reciprocals. ~ John D. Cook (@JohnDCook). #Math
- Descubriendo la programación funcional: Lisp con Diego Sevilla (@diegosevilla). #Lisp #CommonLisp #ProgramaciónFuncional12
- Las bases matemáticas de la programación funcional. ~ Héctor Iván Patricio Moreno. #ProgramaciónFuncional
- Proceedings of the 2020 Scheme and Functional Programming Workshop. #FunctionalProgramming
- Machine-learning mathematical structures. ~ Yang-Hui He. #MachineLearning #Math
- Ten computer codes that transformed science. ~ Jeffrey M. Perkel. #CompSci via @vardi
- Tablas para cálculos en org-mode. #Emacs #OrgMode
- Teaching Haskell means teaching important concepts. ~ Jonathan Thaler (@JonathanThaler). #Haskell #FunctionalProgramming
- Formalising mathematics: an introduction. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Capturing call stack with Haskell exceptions. ~ Maxim Koltsov (@maksbotan). #Haskell #FunctionalProgramming
- [[https://lispcookbook.github.io/cl-cookbook][The Common Lisp Cookbook [in EPUB and PDF format]]]./#download-in-epub #eBook #CommonLisp
- El número de Dottie. ~ M.A. Morales (@gaussianos). #Matemáticas
- [[https://raw.githubusercontent.com/DSLsofMath/DSLsofMath/master/L/snapshots/DSLsofMathBook_snapshot_2021-01-17.pdf][Domain-specific languages of Mathematics [Draft of January 17, 2021]]]. ~ Patrik Jansson (@patrikja), Cezar Ionescu, Jean-Philippe Bernardy. #Haskell #FunctionalProgramming #Math
- [[https://github.com/DSLsofMath/DSLsofMath][DSLsofMath: Domain-specific languages of Mathematics [Repo]]]. ~ Patrik Jansson (@patrikja) et als. #Haskell #FunctionalProgramming #Math
- A novice-friendly induction tactic for Lean. ~ Jannis Limperg. #ITP #LeanProver
- Towards Hoare logic for a small imperative language in Haskell. ~ Boro Sitnikovski (@BSitnikovski). #Haskell #FunctionalProgramming
- Computer Science as the continuation of Logic by other means. ~ Georg Gottlob. #Logic #CompSci
- [[https://leanprover-community.github.io/lt2021/slides/thomas-LT2021-Galois-Theory.pdf][Formalizing Galois Theory in Lean [Slides]]]. ~ Thomas Browning, Patrick Lutz. #ITP #LeanProver #Math
- [[https://youtu.be/-6z6qTD_vv8][Formalizing Galois Theory in Lean [Vídeo]]]. ~ Thomas Browning, Patrick Lutz. #ITP #LeanProver #Math
- Las Matemáticas son suficientes para mí. ~ Juan Arias de Reyna. #Matemáticas
- org-special-block-extras (A unified interface for special blocks and links: defblock). ~ Musa Al-hassy./#Judgements-Inference-rules-and-proof-trees #Emacs #OrgMode
- Model theory in Lean. ~ Vaibhav Karve. #ITP #LeanProver #Logic
- Machine-checked computer-aided mathematics. ~ Assia Mahboubi. #ITP #Coq #Math
- Towards efficient and verified virtual machines for dynamic languages. ~ Martin Desharnais, Stefan Brunthaler. #ITP #IsabelleHOL
- From Aristotle to the iPhone. ~ Moshe Y. Vardi (@vardi). #Logic #CompSci
- Axiomatic Geometry in Lean. ~ Vaibhav Karve, Lawrence Zhao, Edward Kong, Alex Dolcos, Nicholas Phillips. #ITP #LeanProver #Math
- [[https://youtu.be/K-kLck8BvDM][Axiomatic Geometry in Lean [Video]]]. ~ Vaibhav Karve. #ITP #LeanProver #Math
- [[https://github.com/vaibhavkarve/leanteach2020][Axiomatic Geometry in Lean [Code]]]. ~ Vaibhav Karve, Lawrence Zhao, Edward Kong, Alex Dolcos, Nicholas Phillips. #ITP #LeanProver #Math
- Lebesgue integration. (Detailed proofs to be formalized in Coq). ~ François Clément, Vincent Martin. #ITP #Coq #Math
- Permutate parsers, don’t validate. ~ Ju Liu (@arkh4m). #Haskell #FunctionalProgramming
- An introduction to ghc-debug: precise memory analysis for Haskell programs. ~ Matthew Pickering. #Haskell #FunctionalProgramming
- Why exactly I want Boring Haskell to happen. ~ Artyom Kazak (@availablegreen). #Haskell #FunctionalProgramming
- Beginner’s guide to mathematical constructivism. ~ Jan Gronwald. #Math
- En toute logique: une origine de l’ordinateur. ~ Frédéric Prost. #Logic #CompSci
- Publicar HTML con Org-Mode. #Emacs #OrgMode
- A verified decision procedure for the first-order theory of rewriting for linear variable-separated rewrite systems. ~ Alexander Lochmann, Aart Middeldorp, Fabian Mitterwallner, Bertram Felgenhauer. #ITP #IsabelleHOL
- A formal proof of PAC learnability for decision stumps. ~ Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, Jean-Baptiste Tristan. #ITP #LeanProver
- The friendship theorem in Lean. ~ Aaron Anderson. #ITP #LeanProver #Math
- CertRL: Formalizing convergence proofs for value and policy iteration in Coq. ~ Koundinya Vajjha, Avraham Shinnar, Vasily Pestun, Barry Trager, Nathan Fulton. #ITP #Coq
- Abel-Ruffini Theorem as a Mathematical Component. ~ Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub. #ITP #Coq #Math
- Making an IO. ~ Lúcás Meier (@cronokirby). #Haskell #FunctionalProgramming
- Contextual refinement of the Michael-Scott queue (Proof pearl). ~ Simon Friis Vindum, Lars Birkedal. #ITP #Coq
- Reasoning about monotonicity in separation logic. ~ Amin Timany, Lars Birkedal. #ITP #Coq
- Developing and certifying Datalog optimizations in Coq/MathComp. ~ Pierre-Léo Bégay, Pierre Crégut, Jean-François Monin. #ITP #Coq
- An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR. ~ Max W. Haslbeck, René Thiemann. #ITP #IsabelleHOL #Haskell
- Certified quantum computation in Isabelle/HOL. ~ Anthony Bordg, Hanna Lachnitt, Yijun He. #ITP #IsabelleHOL
- [[http://alexjbest.github.io/talks/lean-generalisation][Automatically generalising theorems using typeclasses in Lean [Slides]]]. ~ Alex J. Best./#/#ITP #LeanProver #Math
- [[https://bostonu.zoom.us/rec/play/yPZ5hwU7T5C2wwAUYMKEwed7Y83lsvPEci6CP-AiIel8A9u05OHbOLcAy-mi__tqgg3vBDvhXc4wVY_p.B9N6zDkf2SMpf2Nh?startTime=1609940780000][Automatically generalising theorems using typeclasses in Lean [Video]]]. ~ Alex J. Best. #ITP #LeanProver #Math
- Implementation of two layers type theory in Dedukti and application to Cubical Type Theory. ~ Bruno Barras, Valentin Maestracci. #ITP #Dedukti
- Lean Together 2021. ~ Kevin Buzzard (@XenaProject). #ITP #LeanProver #Math
- Formalizing category theory in Agda. ~ Jason Z.S. Hu, Jacques Carette. #ITP #Agda #CategoryTheory #Math
- Formal verification of semi-algebraic sets and real analytic functions. ~ J. Tanner Slagel, Lauren White, Aaron Dutle. #ITP #PVS #Math
- On the formalisation of Kolmogorov complexity. ~ Elliot Catt, Michael Norrish. #ITP #HOL4
- Haskell: (.) . (.) explained (Let’s get a grasp of composition equivalences in Haskell). #Haskell #FunctionalProgramming
- Formalizing the ring of Witt vectors. ~ Robert Y. Lewis. #ITP #LeanProver #Math
- Mechanisation of model-theoretic conservative extension for HOL with ad-hoc overloading. ~ Arve Gengelbach, Johannes Åman Pohjola, Tjark Weber. #ITP #HOL4
- Object-level reasoning with logics encoded in HOL Light. ~ Petros Papapanagiotou, Jacques Fleuriot. #ITP #HOL_Light #Logic
- Deductive systems and coherence for skew prounital closed categories. ~ Tarmo Uustalu, Niccolò Veltri, Noam Zeilberger. #ITP #Agda
- Why Haskell is our first choice for building production software systems. ~ Christian Charukiewicz (@charukiewicz). #Haskell #FunctionalProgramming
- 144 is the largest square in the Fibonacci Sequence (A formalisation of Cohn’s Proof). ~ Harun Khan #ITP #LeanProver #Math via @XenaProject
- The Eudoxus real numbers in Lean. ~ Xiang Li. #ITP #LeanProver #Math via @XenaProject
- Set theory, type theory and the future of proof verification software. ~ James Palmer. #ITP #LeanProver #Math via @XenaProject
- A formal proof of correctness of a recursive integer square root algorithm. ~ Mark Dickinson. #ITP #LeanProver #Math
- Schemes in Lean. ~ Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon Fernández Mir, Scott Morrison. #ITP #LeanProver #Math
- Performance aspects of correctness-oriented synthesis flows. ~ F. Bornebusch, C. Lüth, R. Wille, R. Drechsler. #ITP #Coq
- An anti-locally-nameless approach to formalizing quantifiers. ~ Olivier Laurent. #ITP #Coq
- Formal verification of arithmetic RTL: Translating Verilog to C++ to ACL2. ~ David M. Russinoff. #ITP #ACL2
- Formalizing 100 theorems. ~ Freek Wiedijk. #ITP #Math
- Formalizing 100 theorems in Lean. #ITP #Math #LeanProver
- Trouble in paradise: Fibonacci. #Haskell #FunctionalProgramming
- Indexed optics dilemma. ~ Oleg Grenrus (@phadej). #Haskell #FunctionalProgramming
- Algorithmic problem solving. ~ Johan Sannemo. #eBook #Programming #Algorithms
- La saga del infinito, de Mates Mike. ~ M.A. Morales (@gaussianos). #Matemáticas
- [[https://youtu.be/eSXiClL4COw][LeanStep: a dataset and environment for (interactive) neural theorem proving [Video]]]. ~ Jason Rute. #ITP #Leanprover #MachineLearning
- [[https://docs.google.com/presentation/d/1poOu2gP9mSGAdAFvOupHvf4tpgD33jACQLJAVcphA1g/edit?usp=sharing][LeanStep: a dataset and environment for (interactive) neural theorem proving [Slides]]]. ~ Jason Rute. #ITP #Leanprover #MachineLearning
- Theorem proving and algebra. ~ Joseph A. Goguen. #eBook #ITP #Math
- Elementary programming. ~ Michael Peyton Jones. #Haskell #Programming
- A first look at info table profiling. ~ Matthew Pickering, David Eichmann. #Haskell #FunctionalProgramming
- Benchmarks of discrimination package. ~ Oleg Grenrus (@phadej). #Haskell #FunctionalProgramming
- CLP(FD) and CLP(ℤ): Prolog integer arithmetic. ~ Markus Triska (@MarkusTriska). #Prolog #LogicProgramming #CLP
- ECLIPSE (A tutorial introduction). ~ Andrew M. Cheadle et als. #Prolog #LogicProgramming #CLP
- Programación lógica con restricciones. #Prolog #CLP
- Soluciones lógicas de problemas lógicos. #Prolog #ProgramaciónLógica #CLP
- ACL2 induction heuristics. ~ J Strother Moore. #ITP #ACL2
- Word problem for one-relator groups. ~ Chris Hughes. #ITP #LeanProver #Math
- A Lean introduction to pure mathematics. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Logic #Math
- MTH1001 (Mathematical structures) in Lean. ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Logic #Math
- EMS reals (A project for investigating the real number system via the interactive theorem prover Lean). ~ Gihan Marasingha (@gihanmarasingha). #ITP #LeanProver #Logic #Math
- Lassie: HOL4 tactics by example. ~ Heiko Becker et als.. #ITP #HOL4
- Formalizing domain models of the typed and the untyped lambda calculus in Agda. ~ David Lidell. #MSc_Thesis #ITP #Agda
- On the unreasonable effectiveness of SAT Solvers. ~ Vijay Ganesh, Moshe Y. Vardi. #Logic #ATP #SAT_Solvers
- Riemann Hypothesis in Lean. ~ Brandon H. Gomes (@brandonhgomes), Alex Kontorovich. #ITP #LeanProver #Math
- [[https://leanprover-community.github.io/lt2021/slides/Macbeth-slides.pdf][An example of a manifold [Slides]]]. ~ Heather Macbeth. #ITP #LeanProver #Math
- [[https://youtu.be/deppJ2q_5a0][An example of a manifold [Video]]]. ~ Heather Macbeth. #ITP #LeanProver #Math
- Symbolic computation in Maude: Some tapas. ~ José Meseguer. #ITP #Maude
- Compile-time evaluation in Haskell. ~ Vladislav Zavialov. #Haskell #FunctionalProgramming
- Predictions for 2021. | Gödel’s Lost Letter and P = NP. ~ R.J. Lipton & K.W. Regan. #CompSci
- Formalizing Hall’s Marriage Theorem in Lean. ~ Alena Gusakov, Bhavik Mehta, Kyle A. Miller. #ITP #LeanProver #Math
- Finiteness in cubical type theory. ~ Donnacha Oisín Kidney (@oisdk). #MSc_Thesis #ITP #Agda #HoTT
- An overview of Lean 4. ~ Leonardo de Moura, Sebastian Ullrich. #ITP #LeanProver
- [[https://leanprover-community.github.io/lt2021/slides/floris-measure.pdf][Measure theory in Lean [slides]]]. ~ Floris van Doorn. #ITP #LeanProver #Math
- [[https://youtu.be/yH3-zE0bYCU][Measure theory in Lean [video]]]. ~ Floris van Doorn. #ITP #LeanProver #Math
- The visitor pattern is essentially the same thing as Church encoding. ~ Gabriel Gonzalez (@GabrielG439). #Haskell #FunctionalProgramming
- Functional Pearl: It’s easy as 1,2,3. ~ Graham Hutton. #Haskell #FunctionalProgramming
- Trying to compose non-composable: monads. ~ Murat Kasimov. #Haskell #FunctionalProgramming
- Learning TypeFamilies together! ~ Flavio Corpa (@FlavioCorpa). #Haskell #FunctionalProgramming
- Tautology checkers in Isabelle and Haskell. ~ Jørgen Villadsen. #Logic #ITP #IsabelleHOL #Haskell #FunctionalProgramming
- Theorem proving for Lewis logics of counterfactual reasoning. ~ Marianna Girlando, Bjoern Lellmann, Nicola Olivetti, Stefano Pesce, Gian Luca Pozzato. #ATP #Logic #Prolog #LogicProgramming
- Deterministic Finite Automata (DFA) in Lean. ~ Fox Thomson. #ITP #LeanProver
- Nondeterministic Finite Automata (NFA) in Lean. ~ Fox Thomson. #ITP #LeanProver
- Theory of iteration and recursion. ~ Li-yao Xia (@lysxia). #Haskell #FunctionalProgramming
- [[https://bindthegap.news/issues/02dec2020.html][Bind the gap (Monthly digital functional programming magazine) [Issue 2, Dec 2020]]]. #Haskell #FunctionalProgramming
- Mirror mirror: Reflection and encoding via. ~ Matt Parsons (@mattoflambda). #Haskell #FunctionalProgramming
- Lessons learned from a year of writing Haskell. ~ Adam Wespiser (@wespiser). #Haskell #FunctionalProgramming
- Coindexed optics. ~ Oleg Grenrus (@phadej).l#Haskell #FunctionalProgramming
- Dihedral groups in Lean. ~ Shing Tak Lam. #ITP #LeanProver #Math
- Verifying C11-style weak memory libraries. ~ Sadegh Dalvandi, Brijesh Dongol. #ITP #IsabelleHOL
- Lean 4 manual. #Lean4 #FunctionalProgramming #ITP
- Formalization of the equivalence among completeness theorems of real number in Coq. ~ Yaoshun Fu, Wensheng Yu. #ITP #Coq #Math
- A Coq formalization of data provenance. Véronique Benzaken et als. #ITP #Coq
- Synthetic undecidability proofs in Coq. ~ Dominik Kirst. #ITP #Coq
- Two reasons why you found learning haskell hard. ~ School of FP (@schooloffp). #Haskell #FunctionalProgramming
- Learn just enough about linear types. ~ Artyom Kazak (@availablegreen). #Haskell #FunctionalProgramming