classification
- this folder contains code required to reproduce experiments in the section 4.1Full
- this subfolder contains code to reproduce experiments on SkipPool-FullFixed
- this subfolder contains code to reproduce experiments on standard SkipPool
autoencoder
- this folder contains code to reproduce the experiment in the section 4.2
- Go to
classification/Fixed/model
. - For example run the following to train on DD:
python main.py --dataset --nhid 128 --batch_size 64 --lr 1e-3 --weight_decay 1e-4 --dropout_ratio 0.4
- Data required for this experiment should be available in
classification/data
directory. - The trained models are inside
[dataset_name]/rep_0/fold_[fold no.]
, accuracy for each fold is logged in filefolds_res_log.txt
. - Average accuracy for the rep 0 is logged in
rep_res_log.txt
.
- Go to
classification/Full/model
. - For example run the following to train on DD:
python main.py --dataset DD --fixStride 5 --batch_size 128 --nhid 64 --lr 1e-4 --conv gcn
- Data required for this experiment should be available in
classification/data
dir. - The trained models are inside
[dataset_name]/fold_[fold no.]
, accuracy for each fold is logged in filefolds_res_log.txt
For both SkipPool & SkipPool-Full you can specify the number process for each pooling layer by a list. use --p-list
command.
- For example run the following to have 2,2 number of processes in respective pooling layers:
python main.py --dataset DD --fixStride 5 --batch_size 128 --nhid 64 --lr 1e-4 --conv gcn --p-list 2,2
- Go to
autoencoder
directory. - If you want to train with SkipPool-Full then use
--full
command. Otherwise standard SkipPool is used.
Example:
python run_ae.py --dataset [graph name] --full --fixStride 5
python run_ae.py --dataset Ring --full --fixStride 5
- MODELNET40 from which Airplane, Car, Guitar, Person are obtained, is not readily available. If one of these Graphs are needed they it will be downloaded.
- Data used to train GAE are at
autoencoder/data
- Training models will be at
[method]/[graph_name]/rep_0
, method is either Full or Fixed.
- Pytorch (2.0.1)
- Pytorch_Scatter (2.1.1)
- torch_sparse (0.6.17)
- Pytorch_Geometric (2.3.1)
- PyGSP (0.5.1)
Dataset | Hidden Dimension | Batch Size | Learning Rate | Weight Decay | Dropout |
---|---|---|---|---|---|
DD | 128 | 64 | 1e-3 | 1e-4 | 0.4 |
PROTEINS | 64 | 64 | 1e-3 | 1e-4 | 0.5 |
NCI1 | 128 | 32 | 5e-4 | 1e-4 | 0.0 |
NCI109 | 128 | 32 | 5e-4 | 1e-4 | 0.2 |
FRANKENSTEIN | 32 | 32 | 1e-3 | 1e-4 | 0.0 |
Dataset | Hidden Dimension | Batch Size | Learning Rate |
---|---|---|---|
DD | 64 | 128 | 1e-4 |
REDDIT-B | 128 | 32 | 1e-3 |