A simple evolutionary algorithm implementation for function optimization.
This project implements an evolutionary algorithm to optimize two different multi-modal functions:
where:
$x_1,x_2 \in [0,6]$ - For
$j=2,3,4,5$ , the function has 16, 36, 64, and 100 global optima respectively - Current implementation uses
$j=2$
where:
$x_i \in [-10,10]$ - For
$n=2$ , the function has 18 different global optima
- Population initialization
- Custom selection mechanism
- Crossover operation (rate: 0.4)
- Mutation operation (rate: 0.1)
- Real-time 3D visualization
- python
- numpy==1.21.0
- pandas==2.0.0
- matplotlib==3.5.0