Skip to content

cache_t

ShenYj edited this page Dec 15, 2021 · 2 revisions

cache_t

.

cache_t的主要成员

  • _bucketsstruct bucket_t *类型的一个结构体指针
  • _maskmask_t类型, 在64位下为4字节, 掩码, _occupied - 1
  • _flagsuint16_t类型, 2字节
  • _occupieduint16_t类型, 2字节
struct cache_t {

    #if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
    explicit_atomic<struct bucket_t *> _buckets;    // 8字节
    explicit_atomic<mask_t> _mask;                  // 4字节
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;

    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;

    #if __LP64__
    uint16_t _flags;    // 2字节
    #endif
    uint16_t _occupied; // 2字节

    考虑篇幅等原因,其他静态成员变量、方法省略...
}
  • explicit_atomic 定义

    template <typename T>
    struct explicit_atomic : public std::atomic<T> {
        explicit explicit_atomic(T initial) noexcept : std::atomic<T>(std::move(initial)) {}
        operator T() const = delete;
        
        T load(std::memory_order order) const noexcept {
            return std::atomic<T>::load(order);
        }
        void store(T desired, std::memory_order order) noexcept {
            std::atomic<T>::store(desired, order);
        }
        
        // Convert a normal pointer to an atomic pointer. This is a
        // somewhat dodgy thing to do, but if the atomic type is lock
        // free and the same size as the non-atomic type, we know the
        // representations are the same, and the compiler generates good
        // code.
        static explicit_atomic<T> *from_pointer(T *ptr) {
            static_assert(sizeof(explicit_atomic<T> *) == sizeof(T *),
                        "Size of atomic must match size of original");
            explicit_atomic<T> *atomic = (explicit_atomic<T> *)ptr;
            ASSERT(atomic->is_lock_free());
            return atomic;
        }
    };
  • mask_t 为适配32位和64位的一个类型别名, 在64位下为4字节

    #if __LP64__
    typedef uint32_t mask_t;  // x86_64 & arm64 asm are less efficient with 16-bits
    #else
    typedef uint16_t mask_t;
    #endif

_buckets

_bucketsstruct bucket_t类型的散列表,方法的缓存(以散列表的形式存储bucket_t

散列表(哈希表)是以空间换时间,例如:刚开始为cache_t分配一定的内存如10, 当内存不够用时内存扩大2倍, 依次类推。

_mask

_mask是指掩码数据,用于在哈希算法或者哈希冲突算法中计算哈希下标,其中mask等于capacity - 1_buckets的数组长度-1(容量的临界值))

为什么按位&_mask ?
按位与可保证得到的值<=_mask,这样就不会超出分配的空间

_occupied

表示散列表中已占用的容量

哈希表中sel-imp的占用大小(即可以理解为分配的内存中已经存储了sel-imp的的个数)

  • 散列表存储原理

    初始时, 为对象的cach_t分配一个空间, 值为NULL
    调用方法时, 为对象发送一个 SEL消息, 如 @selector(test), 将这个方法缓存
    系统用SEL_mask作按位与计算:@selector(test) & _mask,假设其值==2,
    检查索引2对应的空间是否为NULL,如果为NULL就将这个bucket_t缓存在索引2对应空间
    如果不为空,索引减1,再检查是否为NULL, 依次类推.如果索引<0,则使索引= _mask - 1,直至找到索引对应空间为NULL,再缓存

    在哈希这种数据结构里面,有一个概念用来表示空位的多少叫做装载因子——装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。负载因子是3/4的时候,空间利用率比较高,而且避免了相当多的Hash冲突,提升了空间效率

    sel-imp的存储是通过哈希算法计算下标的,其计算的下标有可能已经存储了sel,所以又需要通过哈希冲突算法重新计算哈希下标,所以导致下标是随机的,并不是固定的。

  • 发生改变的操作有

    • init会导致occupied变化
    • 属性赋值,也会隐式调用set方法,导致occupied变化
    • 方法调用,会导致occupied变化

关键函数

void cache_t::incrementOccupied() 
{
    _occupied++;
}

仅且会在void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)函数中调用
void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
理解为cache_t的插入,而cache中存储的就是sel-imp
所以cache的原理从insert方法开始

ALWAYS_INLINE
void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
{
#if CONFIG_USE_CACHE_LOCK
    cacheUpdateLock.assertLocked();
#else
    runtimeLock.assertLocked();
#endif
    ASSERT(sel != 0 && cls->isInitialized());
    // Use the cache as-is if it is less than 3/4 full
    mask_t newOccupied = occupied() + 1;
    unsigned oldCapacity = capacity(), capacity = oldCapacity;
    if (slowpath(isConstantEmptyCache())) {
        // Cache is read-only. Replace it.
        if (!capacity) capacity = INIT_CACHE_SIZE;
        reallocate(oldCapacity, capacity, /* freeOld */false);
    }
    else if (fastpath(newOccupied <= capacity / 4 * 3)) {
        // Cache is less than 3/4 full. Use it as-is.
    }
    else {
        capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
        if (capacity > MAX_CACHE_SIZE) {
            capacity = MAX_CACHE_SIZE;
        }
        reallocate(oldCapacity, capacity, true);
    }
    bucket_t *b = buckets();
    mask_t m = capacity - 1;
    mask_t begin = cache_hash(sel, m);
    mask_t i = begin;
    // Scan for the first unused slot and insert there.
    // There is guaranteed to be an empty slot because the
    // minimum size is 4 and we resized at 3/4 full.
    do {
        if (fastpath(b[i].sel() == 0)) {
            incrementOccupied();
            b[i].set<Atomic, Encoded>(sel, imp, cls);
            return;
        }
        if (b[i].sel() == sel) {
            // The entry was added to the cache by some other thread
            // before we grabbed the cacheUpdateLock.
            return;
        }
    } while (fastpath((i = cache_next(i, m)) != begin));
​
    cache_t::bad_cache(receiver, (SEL)sel, cls);
}

主要分为以下几部分
1、计算出当前的缓存占用量
2、根据缓存占用量判断执行的操作
3、针对需要存储的bucket进行内部impsel赋值

计算出当前的缓存占用量

根据occupied的值计算出当前的缓存占用量,当属性未赋值及无方法调用时,此时的occupied()为0,而newOccupied为1,如下所示

mask_t newOccupied = occupied() + 1;

alloc申请空间时,此时的对象已经创建,如果再调用init方法,occupied也会+1
当有属性赋值时,会隐式调用set方法,occupied也会增加,即有几个属性赋值,occupied就会在原有的基础上加几个
当有方法调用时,occupied也会增加,即有几次调用,occupied就会在原有的基础上加几个

根据缓存占用量判断执行的操作

/// 如果是第一次创建,则默认开辟4个
if (slowpath(isConstantEmptyCache())) {
    // Cache is read-only. Replace it.
    // INIT_CACHE_SIZE = (1<<2) = 4
    if (!capacity) capacity = INIT_CACHE_SIZE;
    reallocate(oldCapacity, capacity, /* freeOld */false);
}
/// 如果缓存占用量小于等于3/4,则不作任何处理
else if (fastpath(newOccupied <= capacity / 4 * 3)) {
    // Cache is less than 3/4 full. Use it as-is.
}
/// 如果缓存占用量超过3/4,则需要进行两倍扩容以及重新开辟空间
else {
    capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
    if (capacity > MAX_CACHE_SIZE) {
        capacity = MAX_CACHE_SIZE;
    }
    reallocate(oldCapacity, capacity, true);
}

reallocate方法:开辟空间

ALWAYS_INLINE
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
    bucket_t *oldBuckets = buckets();
    bucket_t *newBuckets = allocateBuckets(newCapacity);
​
    // Cache's old contents are not propagated. 
    // This is thought to save cache memory at the cost of extra cache fills.
    // fixme re-measure thisASSERT(newCapacity > 0);
    ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
​
    setBucketsAndMask(newBuckets, newCapacity - 1);
​
    if (freeOld) {
        cache_collect_free(oldBuckets, oldCapacity);
    }
}

allocateBuckets方法:向系统申请开辟内存,即开辟bucket,此时的bucket只是一个临时变量
setBucketsAndMask方法:将临时的bucket存入缓存中
cache_collect_free方法:清理之前的缓存

static void cache_collect_free(bucket_t *data, mask_t capacity)
{
#if CONFIG_USE_CACHE_LOCK
    cacheUpdateLock.assertLocked();
#else
    runtimeLock.assertLocked();
#endifif (PrintCaches) recordDeadCache(capacity);
​
    _garbage_make_room ();
    garbage_byte_size += cache_t::bytesForCapacity(capacity);
    garbage_refs[garbage_count++] = data;
    cache_collect(false);
}

如果是第一次,需要分配回收空间 如果不是第一次,则将内存段加大,即原有内存*2 记录存储这次的bucket cache_collect方法:垃圾回收,清理旧的bucket 针对需要存储的bucket进行内部impsel赋值

  • 如果哈希下标的位置未存储sel,即该下标位置获取sel等于0,此时将sel-imp存储进去,并将occupied占用大小加1
  • 如果当前哈希下标存储的sel等于即将插入的sel,则直接返回
  • 如果当前哈希下标存储的sel不等于即将插入的sel,则重新经过cache_next方法 即哈希冲突算法,重新进行哈希计算,得到新的下标,再去对比进行存储

cache_hash哈希算法

static inline mask_t cache_hash(SEL sel, mask_t mask) 
{
    return (mask_t)(uintptr_t)sel & mask;
}

cache_next哈希冲突算法 为什么有-1的算法,也是因为按位与,因为不同的值&_mask,可能结果相同。如果已经被占了就-1

static inline mask_t cache_next(mask_t i, mask_t mask) {
    return i ? i-1 : mask;
}

Getting Started

Social

Clone this wiki locally