This work been done by Shane at UNOSAT
The goal of UNOSAT-AI-Building-Footprint Project is to detect building on high resolution satellite imagery. It can get the geojson file of the corresponding satellite imagery end to end.
-
Dataset Preparation: Convert Shpfile to coco format annotation
-
Detection Model: we use the DetectoRS as the detection model
-
The whole Satellite imagery inference strategy: Slice the whole satellite and convert the output of patches to the whole geojson file.
-
Shell scripts of the pipeline.
We provide a Dockerfile to build an image for the pipline' environment.
# build an image with PyTorch 1.3, CUDA 10.1,CUDNN 7
docker build --no-cache -t unosataifootprint .
Run it with
nvidia-docker run -it --ipc=host -v {UNOSAT-Building-Footprint}:/workspace/Buildingfootprint unosataifootprint
dataset_preparation.sh
cd /DetectoRS-master-UNOSAT
tools/dist_train.sh {CONFIGS} {GPUNUMS}
for example: tools/dist_train.sh configs/DetectoRS/DetectoRS_mstrain_400_1200_r50_40e.py 4
Just need put the satellite imagery on the OrgImage directory
Run the shell below
infer_tot.sh
We can get the corresponding output geojson file on the Output directly
aws
UNOSAT-AI-Building-Footprint-ok
TO DO:
Multi-GPU test
dist_test.sh
infer_json_test.py
ann_file.py