Skip to content

Extended Canonical Correlation Analysis, eCCA

Notifications You must be signed in to change notification settings

Stark0x01/eCCAforSSVEP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

eCCAforSSVEP

Extended Canonical Correlation Analysis, eCCA JUVS3R.png

Intro

  • 数据采用benchmark dataset受试者1滤波(6~90Hz)后的数据;
  • 数据长度为1.5s,采样率250Hz;
  • 标准的eCCA流程;
  • 存在一个问题,实验测试后发现采用前四项相关系数融合的效果好于五项。

References

  • Wang Y, Chen X, Gao X, Gao S (2017) A benchmark dataset for SSVEP-based brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25:1746-1752.
  • Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, Gao S (2015) High-speed spelling with a noninvasive brain-computer interface. PNAS 112:E6058-6067.
  • Wong CM, Wan F, Wang B, Wang Z, Nan W, Lao KF, Mak PU, Vai MI, Rosa A (2020) Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs. Journal of neural engineering 17:016026.
  • Xu M, Han J, Wang Y, Jung TP, Ming D (2020) Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features. IEEE Transactions on Biomedical Engineering.
  • Mehdizavareh MH, Hemati S, Soltanian-Zadeh H (2020) Enhancing performance of subject-specific models via subject-independent information for SSVEP-based BCIs. PloS one 15:e0226048.

About

Extended Canonical Correlation Analysis, eCCA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages