Official code implementation for WSDM 23 paper Graph Sequential Neural ODE Process for Link Prediction on Dynamic and Sparse Graphs.
Proof supplementary file: supplementary_file.pdf
Source code: code
- python 3.8
- ubuntu 20.04
- RTX2080
- Anaconda
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
conda install -c dglteam dgl-cuda11.3
conda install pandas numpy pyyaml tqdm pybind11 psutil scikit-learn
python setup.py build_ext --inplace
python setup.py install
pip install torch-scatter torchdiffeq
python train_np.py --data WIKI_0.3 --config config/DySAT.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/DySAT.yml --base_model snp --ode --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/TGN.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/TGN.yml --base_model snp --ode --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/TGAT.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/TGAT.yml --base_model snp --ode --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/APAN.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/APAN.yml --base_model snp --ode --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/JODIE.yml --base_model origin --eval_neg_samples 50
python train_np.py --data WIKI_0.3 --config config/JODIE.yml --base_model snp --ode --eval_neg_samples 50