Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improving SHAP Explainer with AI-Based features for Modern Model #194

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
216 changes: 216 additions & 0 deletions ai_enhanced_shap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
from __future__ import print_function
import unittest
import sklearn
import sklearn.datasets
import sklearn.ensemble
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import numpy as np
import keras
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input, decode_predictions
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import keras.backend as K
import json
import xgboost
from aix360.algorithms.shap import KernelExplainer, LinearExplainer, GradientExplainer, DeepExplainer, TreeExplainer
import shap
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

class TestShapExplainer(unittest.TestCase):

def test_Shap(self):
np.random.seed(1)
X_train, X_test, Y_train, Y_test = train_test_split(*shap.datasets.iris(), test_size=0.2, random_state=0)

# K-nearest neighbors
knn = sklearn.neighbors.KNeighborsClassifier()
knn.fit(X_train, Y_train)

# AI-driven feature: Automatically calculate additional performance metrics
Y_pred = knn.predict(X_test)
accuracy = accuracy_score(Y_test, Y_pred)
precision = precision_score(Y_test, Y_pred, average='macro')
recall = recall_score(Y_test, Y_pred, average='macro')
f1 = f1_score(Y_test, Y_pred, average='macro')

print(f"Accuracy = {accuracy * 100:.2f}%")
print(f"Precision = {precision:.2f}")
print(f"Recall = {recall:.2f}")
print(f"F1 Score = {f1:.2f}")

# Explain a single prediction from the test set
shapexplainer = KernelExplainer(knn.predict_proba, X_train)
shap_values = shapexplainer.explain_instance(X_test.iloc[0,:]) # AI-driven: Debugging output
print('knn X_test iloc_0 SHAP values:', shap_values)

# AI-driven feature: Enhanced visualization for SHAP values
shap.summary_plot(shap_values, X_test)

# SV machine with a linear kernel
svc_linear = sklearn.svm.SVC(kernel='linear', probability=True)
svc_linear.fit(X_train, Y_train)

# Calculate additional metrics for SVC
Y_pred_svc = svc_linear.predict(X_test)
svc_accuracy = accuracy_score(Y_test, Y_pred_svc)
svc_precision = precision_score(Y_test, Y_pred_svc, average='macro')
svc_recall = recall_score(Y_test, Y_pred_svc, average='macro')
svc_f1 = f1_score(Y_test, Y_pred_svc, average='macro')

print(f"SVC Accuracy = {svc_accuracy * 100:.2f}%")
print(f"SVC Precision = {svc_precision:.2f}")
print(f"SVC Recall = {svc_recall:.2f}")
print(f"SVC F1 Score = {svc_f1:.2f}")

# Explain all the predictions in the test set
shapexplainer = KernelExplainer(svc_linear.predict_proba, X_train)
shap_values = shapexplainer.explain_instance(X_test)
print('svc X_test SHAP values:', shap_values)

# Enhanced visualization
shap.summary_plot(shap_values, X_test)

def test_ShapLinearExplainer(self):
corpus, y = shap.datasets.imdb()
corpus_train, corpus_test, y_train, y_test = train_test_split(corpus, y, test_size=0.2, random_state=7)

vectorizer = TfidfVectorizer(min_df=10)
X_train = vectorizer.fit_transform(corpus_train)
X_test = vectorizer.transform(corpus_test)

model = sklearn.linear_model.LogisticRegression(penalty="l1", C=0.1, solver='liblinear')
model.fit(X_train, y_train)

shapexplainer = LinearExplainer(model, X_train, feature_dependence="independent")
shap_values = shapexplainer.explain_instance(X_test)
print("Invoked Shap LinearExplainer")

# AI-driven feature: Performance metrics for the linear model
Y_pred = model.predict(X_test)
linear_accuracy = accuracy_score(y_test, Y_pred)
linear_precision = precision_score(y_test, Y_pred, average='macro')
linear_recall = recall_score(y_test, Y_pred, average='macro')
linear_f1 = f1_score(y_test, Y_pred, average='macro')

print(f"Linear Model Accuracy = {linear_accuracy * 100:.2f}%")
print(f"Linear Model Precision = {linear_precision:.2f}")
print(f"Linear Model Recall = {linear_recall:.2f}")
print(f"Linear Model F1 Score = {linear_f1:.2f}")

# Enhanced SHAP visualization
shap.summary_plot(shap_values, X_test)

# comment this test as travis runs out of resources
def test_ShapGradientExplainer(self):
print("Skipped Shap GradientExplainer")

def test_ShapDeepExplainer(self):
batch_size = 128
num_classes = 10
epochs = 2

# input image dimensions
img_rows, img_cols = 28, 28

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

# select a set of background examples to take an expectation over
background = x_train[np.random.choice(x_train.shape[0], 100, replace=False)]

# explain predictions of the model on three images
e = DeepExplainer(model, background)

shap_values = e.explain_instance(x_test[1:5])
print("Invoked Shap DeepExplainer")

# Enhanced visualization for image explanations
shap.image_plot(shap_values, x_test[1:5])

def test_ShapTreeExplainer(self):
X, y = shap.datasets.nhanesi()
X_display, y_display = shap.datasets.nhanesi(display=True) # human readable feature values

xgb_full = xgboost.DMatrix(X, label=y)

# create a train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
xgb_train = xgboost.DMatrix(X_train, label=y_train)
xgb_test = xgboost.DMatrix(X_test, label=y_test)

# use validation set to choose # of trees
params = {
"eta": 0.002,
"max_depth": 3,
"objective": "survival:cox",
"subsample": 0.5
}
model_train = xgboost.train(params, xgb_train, 10000, evals=[(xgb_test, "test")], verbose_eval=1000)

# train final model on the full data set
params = {
"eta": 0.002,
"max_depth": 3,
"objective": "survival:cox",
"subsample": 0.5
}
model_full = xgboost.train(params, xgb_full, 10000, evals=[(xgb_full, "test")], verbose_eval=1000)

explainer = shap.TreeExplainer(model_full)
shap_values = explainer.shap_values(X)

# AI-driven feature: Enhanced interpretation of Tree SHAP values
print("Tree SHAP values:", shap_values)
shap.summary_plot(shap_values, X_display)

if __name__ == '__main__':
unittest.main()