-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #41 from UofT-EcoSystem/wangshangsam/optim_updates
Update optim to 1.9.1.
- Loading branch information
Showing
8 changed files
with
505 additions
and
288 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
import math | ||
import torch | ||
from torch import Tensor | ||
from typing import List, Optional, Union | ||
|
||
from .utils import Coefficient, is_coefficient | ||
|
||
|
||
def adadelta( | ||
params: List[Tensor], | ||
grads: List[Tensor], | ||
square_avgs: List[Tensor], | ||
acc_deltas: List[Tensor], | ||
*, | ||
lr: Union[float, Coefficient], | ||
rho: Union[float, Coefficient], | ||
eps: Union[float, Coefficient], | ||
weight_decay: [float, Coefficient], | ||
): | ||
r"""Functional API that performs Adadelta algorithm computation. | ||
See :class:`~torch.optim.Adadelta` for details. | ||
""" | ||
|
||
for (param, grad, square_avg, acc_delta) in zip(params, grads, square_avgs, | ||
acc_deltas): | ||
if is_coefficient(weight_decay) or weight_decay != 0: | ||
if is_coefficient(weight_decay): | ||
grad = grad + weight_decay[param] * param | ||
else: | ||
grad = grad.add(param, alpha=weight_decay) | ||
|
||
if is_coefficient(rho): | ||
square_avg.mul_(rho[param]).add_((1 - rho[param]) * grad * grad) | ||
else: | ||
square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho) | ||
if is_coefficient(eps): | ||
std = square_avg.add(eps[param]).sqrt_() | ||
delta = acc_delta.add(eps[param]).sqrt_().div_(std).mul_(grad) | ||
else: | ||
std = square_avg.add(eps).sqrt_() | ||
delta = acc_delta.add(eps).sqrt_().div_(std).mul_(grad) | ||
if is_coefficient(lr): | ||
param.add_(-lr[param] * delta) | ||
else: | ||
param.add_(delta, alpha=-lr) | ||
if is_coefficient(rho): | ||
acc_delta.mul_(rho[param]).add_((1 - rho[param]) * delta * delta) | ||
else: | ||
acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho) | ||
|
||
|
||
def adam( | ||
params: List[Tensor], | ||
grads: List[Tensor], | ||
exp_avgs: List[Tensor], | ||
exp_avg_sqs: List[Tensor], | ||
max_exp_avg_sqs: List[Tensor], | ||
state_steps: List[int], | ||
*, | ||
amsgrad: bool, | ||
beta1: Union[float, Coefficient], | ||
beta2: Union[float, Coefficient], | ||
lr: Union[float, Coefficient], | ||
weight_decay: Union[float, Coefficient], | ||
eps: Union[float, Coefficient], | ||
): | ||
r"""Functional API that performs Adam algorithm computation. | ||
See :class:`~torch.optim.Adam` for details. | ||
""" | ||
|
||
for i, param in enumerate(params): | ||
|
||
grad = grads[i] | ||
exp_avg = exp_avgs[i] | ||
exp_avg_sq = exp_avg_sqs[i] | ||
step = state_steps[i] | ||
|
||
if is_coefficient(beta1): | ||
bias_correction1 = 1 - beta1[param]**step | ||
else: | ||
bias_correction1 = 1 - beta1**step | ||
if is_coefficient(beta2): | ||
sqrt_bias_correction2 = (1 - beta2[param]**step).sqrt() | ||
else: | ||
sqrt_bias_correction2 = math.sqrt(1 - beta2**step) | ||
|
||
if is_coefficient(weight_decay) or weight_decay != 0: | ||
if is_coefficient(weight_decay): | ||
grad = grad + weight_decay[param] * param | ||
else: | ||
grad = grad.add(param, alpha=weight_decay) | ||
|
||
# Decay the first and second moment running average coefficient | ||
if is_coefficient(beta1): | ||
exp_avg.mul_(beta1[param]).add_((1 - beta1[param]) * grad) | ||
else: | ||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | ||
if is_coefficient(beta2): | ||
exp_avg_sq.mul_(beta2[param]).add_( | ||
(1 - beta2[param]) * grad * grad.conj()) | ||
else: | ||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2) | ||
if amsgrad: | ||
# Maintains the maximum of all 2nd moment running avg. till now | ||
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i]) | ||
# Use the max. for normalizing running avg. of gradient | ||
if is_coefficient(eps): | ||
denom = (max_exp_avg_sqs[i].sqrt() / sqrt_bias_correction2).add_( | ||
eps[param]) | ||
else: | ||
denom = (max_exp_avg_sqs[i].sqrt() / sqrt_bias_correction2).add_(eps) | ||
else: | ||
if is_coefficient(eps): | ||
denom = (exp_avg_sq.sqrt() / sqrt_bias_correction2).add_(eps[param]) | ||
else: | ||
denom = (exp_avg_sq.sqrt() / sqrt_bias_correction2).add_(eps) | ||
|
||
if is_coefficient(lr): | ||
step_size = lr[param] / bias_correction1 | ||
else: | ||
step_size = lr / bias_correction1 | ||
|
||
if torch.is_tensor(step_size): | ||
param.add_(-step_size * (exp_avg / denom)) | ||
else: | ||
param.addcdiv_(exp_avg, denom, value=-step_size) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.