-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCutout.py
193 lines (156 loc) · 6.28 KB
/
Cutout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import copy
from models import *
learning_rate = 0.1
epsilon = 0.0314
k = 7
alpha = 0.00784
file_name = 'data_augmentation'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class Cutout(object):
def __init__(self, n_holes, length):
self.n_holes = n_holes
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = torch.ones((h, w), dtype=torch.float32)
for _ in range(self.n_holes):
y = torch.randint(0, h, (1,)).item()
x = torch.randint(0, w, (1,)).item()
y1 = max(0, y - self.length // 2)
y2 = min(h, y + self.length // 2)
x1 = max(0, x - self.length // 2)
x2 = min(w, x + self.length // 2)
mask[y1:y2, x1:x2] = 0
mask = mask.expand_as(img)
img = img * mask
return img
transform_train = transforms.Compose([
transforms.RandomResizedCrop(32, scale=(0.8, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
transforms.ToTensor(),
Cutout(n_holes=1, length=16),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=100, shuffle=False, num_workers=4)
class LinfPGDAttack(object):
def __init__(self, model):
self.model = model
def perturb(self, x_natural, y):
x = x_natural.detach()
x = x + torch.zeros_like(x).uniform_(-epsilon, epsilon)
for i in range(k):
x.requires_grad_()
with torch.enable_grad():
logits = self.model(x)
loss = F.cross_entropy(logits, y)
grad = torch.autograd.grad(loss, [x])[0]
x = x.detach() + alpha * torch.sign(grad.detach())
x = torch.min(torch.max(x, x_natural - epsilon), x_natural + epsilon)
x = torch.clamp(x, 0, 1)
return x
def attack(x, y, model, adversary):
model_copied = copy.deepcopy(model)
model_copied.eval()
adversary.model = model_copied
adv = adversary.perturb(x, y)
return adv
net = ResNet18()
net = net.to(device)
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
adversary = LinfPGDAttack(net)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0002)
def train(epoch):
print('\n[ Train epoch: %d ]' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
adv = adversary.perturb(inputs, targets)
adv_outputs = net(adv)
loss = criterion(adv_outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = adv_outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx % 10 == 0:
print('\nCurrent batch:', str(batch_idx))
print('Current adversarial train accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0)))
print('Current adversarial train loss:', loss.item())
print('\nTotal adversarial train accuracy:', 100. * correct / total)
print('Total adversarial train loss:', train_loss)
def test(epoch):
print('\n[ Test epoch: %d ]' % epoch)
net.eval()
benign_loss = 0
adv_loss = 0
benign_correct = 0
adv_correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
total += targets.size(0)
outputs = net(inputs)
loss = criterion(outputs, targets)
benign_loss += loss.item()
_, predicted = outputs.max(1)
benign_correct += predicted.eq(targets).sum().item()
if batch_idx % 10 == 0:
print('\nCurrent batch:', str(batch_idx))
print('Current benign test accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0)))
print('Current benign test loss:', loss.item())
adv = adversary.perturb(inputs, targets)
adv_outputs = net(adv)
loss = criterion(adv_outputs, targets)
adv_loss += loss.item()
_, predicted = adv_outputs.max(1)
adv_correct += predicted.eq(targets).sum().item()
if batch_idx % 10 == 0:
print('Current adversarial test accuracy:', str(predicted.eq(targets).sum().item() / targets.size(0)))
print('Current adversarial test loss:', loss.item())
print('\nTotal benign test accuracy:', 100. * benign_correct / total)
print('Total adversarial test accuracy:', 100. * adv_correct / total)
print('Total benign test loss:', benign_loss)
print('Total adversarial test loss:', adv_loss)
state = {
'net': net.state_dict()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/' + file_name)
print('Model Saved!')
def adjust_learning_rate(optimizer, epoch):
lr = learning_rate
if epoch >= 100:
lr /= 10
if epoch >= 150:
lr /= 10
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
for epoch in range(0, 200):
adjust_learning_rate(optimizer, epoch)
train(epoch)
test(epoch)