This project is a Java library for GPT API, designed to make it easier
for Java developers to use GPT API.
This is a community maintained project (an unofficial library)
<dependency>
<groupId>io.github.whitemagic2014</groupId>
<artifactId>gpt-magic</artifactId>
<version>version</version>
</dependency>
implementation group: 'io.github.whitemagic2014', name: 'gpt-magic', version: 'version'
short
implementation 'io.github.whitemagic2014:gpt-magic:version'
- This project is lightweight as almost all the code is written in original Java, which will not add any extra weight to your project.
- Of course, it includes interfaces. If you need higher performance, you can override the interfaces yourself.
- The project is more like a utility tool, allowing you to manage your API key by yourself. You can set your key in environment variables such as application.properties/application.yml in a Spring project.
You can set the global key and proxy server as follows:
System.setProperty("OPENAI_API_KEY",""); // no system default value
System.setProperty("OPENAI_API_ORG","");// no system default value
System.setProperty("OPENAI_API_SERVER",""); // default = https://api.openai.com
Alternatively, you can configure them independently for each request.
new CreateChatCompletionRequest()
.key("your api key")
.server("default is https://api.openai.com")
.organization("optional")
.addMessage(ChatMessage.userMessage("prompt"));
.send();
- Audio
- Chat
Completions(legacy)- Embeddings
- Fine-tuning
- Batch
- Files
- Images
- Models
- Moderations
- Assistants
- Threads
- Messages
- Runs
- VectorStores
- VectorStoreFiles
- VectorStoreFileBatches
- Uploads
- invites
- Users
- Projects
- ProjectUsers
- ProjectServiceAccounts
- ProjectApiKeys
- AuditLogs
System.setProperty("OPENAI_API_KEY", "");
//System.setProperty("OPENAI_API_SERVER", "");// default is https://api.openai.com
CreateChatCompletionRequest demo = new CreateChatCompletionRequest()
.model(GptModel.gpt_3p5_turbo)
.addMessage(ChatMessage.systemMessage("system set"))
.addMessage(ChatMessage.userMessage("prompt"));
// send with stream model
String result1 = RequestUtil.streamRequest(demo);
// send without stream model
String result2 = demo2.sendForChoices().get(0).getMessage().getContent();
// ...
// See the code for more details
- Updated: The CreateChatCompletionRequest to support Predicted Outputs. Audio input and output.
- Update: CreateChatCompletionRequest add new param
store
. Whether or not to store the output of this chat completion request for use in our model distillation or evals products.
- New: gpt_o1 models have been added to the GptModel.class
- Update: The URL field in all requests has been changed to the
final
type. - New: Support Uploads APIs
- New: Support invites APIs
- New: Support Users APIs
- New: Support Projects APIs
- New: Support ProjectUsers APIs
- New: Support ProjectServiceAccounts APIs
- New: Support ProjectApiKeys APIs
- New: Support AuditLogs APIs
- New: Two new models, gpt_4o_mini and gpt_4o_mini_0718, have been added to the GptModel.class
- New: Support Uploads APIs
- Update: DefaultGptHttpUtil Class Changed to Singleton Pattern
Old
DefaultGptHttpUtil util = new DefaultGptHttpUtil();
New
DefaultGptHttpUtil util = DefaultGptHttpUtil.getInstance();
Old
DefaultGptHttpUtil util = new DefaultGptHttpUtil(true, 20000, 50000);
New
DefaultGptHttpUtil util = DefaultGptHttpUtil.getInstance();
util.init(true, 20000, 50000);
- This change ensures that
DefaultGptHttpUtil
has only one instance throughout the application lifecycle, thereby reducing memory usage and potential thread safety issues. - The
init
method provides flexibility to set the instance parameters, but it should be called before the first use of theDefaultGptHttpUtil
instance.
- Fixed Bug:Fixed a bug where CreateChatCompletionRequest, CreateRunRequest, and CreateThreadAndRunRequest could not be properly requested when tools were not provided.
- Update: Changelog Jun 6th, 2024
- New: Parallel function calling can be disabled in Chat Completions and the Assistants API by passing parallel_tool_calls=false.
- Update: ToolChoice can set
required
means the model must call one or more tools in Chat Completions and the Assistants API - Upgraded the streamRequestV3 in RequestUtil to now support stream parsing for multiple tool choices. Additionally, the updated streamRequestV3 was used to generate streamRequestV4 with the help of GPT-4. According to GPT, V4 offers higher performance and readability, but I am concerned about potential unknown bugs, so V3 has been retained.
Update: Added support for file search customizations. When using CreateVectorStoreFileRequest, you can specify the chunking_strategy parameter.
- Update: Updated All Assistant-related APIs from version v1 to v2 (Assistant, Thread, Message, Run).
- Update: Updated RetrievalTool to FileSearchTool to adapt to the v2 version of Assistant.
- New: Added all APIs related to VectorStore required by Assistant (VectorStores,VectorStoreFiles,VectorStoreFileBatches).
- Update: Updated CreateChatCompletionRequest to sync with the latest official version (now supports seed, if specified, our system will make a best effort to sample deterministically. In stream mode, it supports returning usage, etc.).
- Update: Updated RequestUtil utility class with a new method streamRequestV3, which supports using tool, usage, multiple choices return, logprob parameters, etc., in CreateChatCompletion in stream mode. This method can almost perfectly convert the chunk object returned by CreateChatCompletionRequest into ChatCompletion.
- Update: Enhanced the GptModel and removed some models that are no longer in use.
- New: Support Batch Apis
- Update: All POJOs have implemented the Serializable interface.
- Optimize: The assignment method for the purpose field in UploadFileRequest has been optimized.
- Update: In RetrieveFileContentRequest, the send method is no longer recommended. Instead, use the sendForContent method to directly obtain the file content.
- Add new models in GptModel. (gpt-4o)
- Update: The CreateChatCompletionRequest now includes a new method, sendForResponse, which returns a CreateChatCompletionResponse. This object not only contains the choice list returned by the sendForChoices method, but also includes additional information such as the token usage for this request.
- Update models in GptModel. (0125 -> gpt-4-turbo-2024-04-09)
- Vision requests can now use JSON mode and function calling. see more
- Update models in GptModel. (1106 -> 0125)
- Fixed the bug that occurred when specifying the calling method using toolChoiceFunction in CreateChatCompletionRequest.
- Update: RequestUtil now includes a new method called streamRequestV2, which is an extended version of streamRequest and provides enhanced support for the function mode.
- Update: update models in GptModel.class
- Update: Renamed ChatTool(function) to FunctionTool and introduced new tools: CodeInterpreterTool and RetrievalTool.
- Update: Enhanced CreateFineTuningJobRequest with two additional parameters: BatchSize and LearningRateMultiplier.
- New: Introduced a new request "ListFineTuningJobsRequest" to the file-tuning feature.
- New: Assistants Apis
- New: Threads Apis
- New: Messages
- New: Runs
// Assistant simple demo
// https://platform.openai.com/docs/assistants/overview/agents
// Step 1: Create an Assistant
JSONObject json1 = new CreateAssistantRequest()
.name("Math Tutor")
.instructions("You are a personal math tutor. Write and run code to answer math questions.")
.model(GptModel.gpt_4_turbo)
.tools(Arrays.asList(new CodeInterpreterTool()))
.send();
System.out.println(json1);
String assistantId = "assistantId";
// Step 2: Create a Thread
JSONObject json2 = new CreateThreadRequest().send();
System.out.println(json2);
String threadId = "threadId";
// Step 3: Add a Message to a Thread
JSONObject json3 = new CreateMessageRequest()
.threadId(threadId)
.content("I need to solve the equation `3x + 11 = 14`. Can you help me?")
.send();
System.out.println(json3);
// Step 4: Run the Assistant
JSONObject json4 = new CreateRunRequest()
.assistantId(assistantId)
.threadId(threadId)
.instructions("Please address the user as WhiteMagic2014. The user has a premium account")
.send();
System.out.println(json4);
String runId = "runId";
// Step 5: Check the Run status
JSONObject json5 = new RetrieveRunRequest().threadId(threadId).runId(runId).send();
System.out.println(json5);
// Step 6: Display the Assistant's Response
JSONObject json6 = new ListMessagesRequest().threadId(threadId).send();
System.out.println(json6);
- Deprecated: Removed outdated methods. (FileTunes,Edit)
- Update: CreateImageRequest now support dall-e-3.
new CreateImageRequest()
.prompt("xxxxxx")
.model(GptModel.Dall_E_3)
.styleVivid()
.size1024x1024()
.formatUrl()
.sendForImages()
.stream()
.forEach(System.out::println);
- New: CreateSpeechRequest is available. It can trans text to speech.
System.out.println(new CreateSpeechRequest().filePath("/path/to/save/file")
.input("CreateSpeechRequest is available. It can trans text to speech.")
.voice(AudioVoiceType.shimmer)
.formatMp3()
.send());
- Update: CreateChatCompletionRequest support image input.
// You can use base64 or URL to upload one or more images.
System.out.println(new CreateChatCompletionRequest()
.model(GptModel.gpt_4_vision_preview)
// 2 url pictures
.addMessage(ChatMessage.userMessageWithImageUrl("Which animal in these two pictures is stronger?",
Arrays.asList("https://pic1/url","https://pic2/url")))
.maxTokens(300)
.sendForChoices().get(0).getMessage().getContent());
System.out.println(new CreateChatCompletionRequest()
.model(GptModel.gpt_4_vision_preview)
// 1 base64 pictures
.addMessage(ChatMessage.userMessageWithImageFilePath("What does this picture describe",
Arrays.asList("/path/to/image/file.jpg")))
.maxTokens(300)
.sendForChoices().get(0).getMessage().getContent());
- Update and Deprecated: The function in ChatMessage and CreateChatCompletionRequest is deprecated, please use the tool now, you can refer to the code in demo.class.
- Fixed the issue where DefaultGptHttpUtil sometimes fails to correctly throw RuntimeException.
- Please read gpt-3-5-turbo-fine-tuning-and-api-updates
- Deprecated: Requests under the FineTunes package have been replaced by the FineTuning requests.
- New: RequestUtil.streamRequest method (Get String result content with stream model)
- Fix the wrong name in GptModel.class
- Update: update models in GptModel.class
- Deprecated: CreateCompletionRequest will be Deprecated
- Optimize:Now, with the use of System.setProperty, you can easily set properties without the need to manually set them each time a request is created.
Explicitly setting in the request > Setting with System.setProperty > System default value.
System.setProperty("OPENAI_API_KEY",""); // no system default value
System.setProperty("OPENAI_API_ORG","");// no system default value
System.setProperty("OPENAI_API_SERVER",""); // default = https://api.openai.com
- New: The CreateChatCompletionRequest function can now call other functions. For more information on how to call functions, please refer to here
- New: Two new models, gpt_3p5_turbo_0613 and gpt_3p5_turbo_16k, have been added to the GptModel.class
- New: The ChatMessage.class now includes a message function, and a new ChatFunction.class has been added for calling functions within the model.
/**
* your custom function
* Get the current weather in a given location
*/
public JSONObject getCurrentWeather(String location, String unit) {
JSONObject fakeResult = new JSONObject();
fakeResult.put("location", location);
if ("celsius".equals(unit)) {
fakeResult.put("temperature", "22~31 C°");
} else if ("fahrenheit".equals(unit)) {
fakeResult.put("temperature", "71.6~87.8 F°");
}
fakeResult.put("forecast", Arrays.asList("sunny", "windy"));
fakeResult.put("unit", unit);
return fakeResult;
}
// A sample for function call
// first make a function object from your custom function method
ChatFunction function = JSONObject.parseObject("{\n" +
" \"name\":\"getCurrentWeather\",\n" +
" \"description\":\"Get the current weather in a given location\",\n" +
" \"parameters\":{\n" +
" \"type\":\"object\",\n" +
" \"required\":[\"location\",\"unit\"],\n" +
" \"properties\":{\n" +
" \"unit\":{\n" +
" \"default\":\"celsius\",\n" +
" \"type\":\"string\",\n" +
" \"enum\":[\"celsius\",\"fahrenheit\"]\n" +
" },\n" +
" \"location\":{\n" +
" \"description\":\"The city and state\",\n" +
" \"type\":\"string\"\n" +
" }\n" +
" }\n" +
" }\n" +
"}", ChatFunction.class);
// second send a CreateChatCompletionRequest with your Function
ChatMessage functionResult1 = new CreateChatCompletionRequest()
.key(key)
.addFunction(function)
.model(GptModel.gpt_3p5_turbo_0613)
.addMessage(ChatMessage.userMessage("What's the weather like in ShangHai today?"))
.functionCallAuto() //.functionCallName("getCurrentWeather")
.sendForChoices()
.get(0)
.getMessage();
// When using functionCallName or functionCallAuto to enable GPT to call a function,
// please note that the resulting output is temporary and not suitable for end users.
// To perform the desired action, you will need to call your custom function.
System.out.println("temp result:");
System.out.println(functionResult1);
// result eg:
// ChatMessage{role='assistant', content='null', name='null', function_call={"name":"getCurrentWeather","arguments":"{\n \"location\": \"Shanghai\"\n}"}}
// If your function returns any information, you should call GPT again to obtain the final result for end users.
String functionName = functionResult1.getFunction_call().getString("name");
String location = functionResult1.getFunction_call().getJSONObject("arguments").getString("location");
String unit = functionResult1.getFunction_call().getJSONObject("arguments").getString("unit");
JSONObject weatherInfo = getCurrentWeather(location, unit);
// finally
ChatMessage functionResult2 = new CreateChatCompletionRequest()
.key(key)
.addFunction(function)
.model(GptModel.gpt_3p5_turbo_0613)
.addMessage(ChatMessage.userMessage("What's the weather like in ShangHai today?"))
.addMessage(functionResult1)// gpt result
.addMessage(ChatMessage.functionMessage(functionName, weatherInfo.toString())) // send a function message with function_name and custom result
.sendForChoices()
.get(0)
.getMessage();
System.out.println("final result:");
System.out.println(functionResult2);
// result eg:
//ChatMessage{role='assistant', content='The weather in Shanghai today is sunny and windy, with a temperature ranging from 22 to 31 degrees Celsius.', name='null', function_call=null}
- Optimize: CreateChatCompletionRequest.addMessage can now directly accept ChatMessage as a parameter.
// Now there are two ways to add a message.
new CreateChatCompletionRequest().addMessage("user","hello");
new CreateChatCompletionRequest().addMessage(ChatMessage.userMessage("hello"));
- New: When using CreateEmbeddingsRequest, if base64Embedding is set to 'true', the returned embedding data format will be in base64.
- New: EmbeddingUtil has been added to convert base64 string embeddings to numerical embeddings.
- Optimize:Optimize ChatMessage, now providing several convenient instantiation methods.
ChatMessage.systemMessage("content");
ChatMessage.userMessage("content");
ChatMessage.assistantMessage("content");
- Fix bug:Fixed the issue of mismatched error message for CreateEmbeddingsRequest due to incorrect input settings.
- Fix bug:Fix the issue of incorrect formatting of the returned result when using CreateChatCompletionRequest and CreateCompletionRequest with stream set to true.
- Optimize:In order to facilitate users who need to use proxies, all requests now support self-specifying a server address.
List<ChatCompletionChoice> demo8 = new CreateChatCompletionRequest()
.server("https://Your.Proxy.Server/servername")
.key(key)
.addMessage("system", "You are a helpful assistant.")
.addMessage("user", "Who won the world series in 2020?")
.addMessage("assistant", "The Los Angeles Dodgers won the World Series in 2020.")
.addMessage("user", "Where was it played?")
.sendForChoices();
- New: When using CreateChatCompletionRequest and CreateCompletionRequest, if the stream mode is set to 'true', an OutputStream can be provided to receive the returned stream data.
// CreateChatCompletionRequest with stream mode
// If you are providing a web service, you can offer HttpServletResponse.getOutputStream()
// so that you can provide your callers with OpenAI's streaming return, allowing them to easily achieve a typewriter effect similar to the OpenAI official page.
ByteArrayOutputStream baos = new ByteArrayOutputStream();
new Thread(() -> {
new CreateChatCompletionRequest()
.key(key)
.addMessage("user", "Can you recommend some science fiction novels to me?")
.stream(true)
.outputStream(baos) // You need to set an OutputStream to receive the returned stream
.send();
}).start();
// a sample to use the streaming return
boolean flag = true;
while (flag) {
byte[] data = baos.toByteArray();
if (data.length > 0) {
String result = new String(data);
baos.reset();
String str = "[" + result.replace("data: [DONE]", "").replace("data:", ",") + "]";
JSONArray jsonArray;
try {
jsonArray = JSON.parseArray(str);
} catch (Exception e) {
System.out.println(str);
throw new RuntimeException(e);
}
for (int i = 0; i < jsonArray.size(); i++) {
JSONObject choice = jsonArray.getJSONObject(i).getJSONArray("choices").getJSONObject(0);
if ("stop".equals(choice.getString("finish_reason"))) {
flag = false;
break;
}
JSONObject delta = choice.getJSONObject("delta");
if (delta.containsKey("content")) {
System.out.print(delta.getString("content"));
}
}
}
try {
// wait for a while
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
- Optimize: CreateEmbeddingsRequest now retrieves embeddings as double instead of float.
- New: Add Distance.class. Calculate cosine distance for embeddings.
- Optimize: Distinguish between sending failure and parsing failure in GptRequest.class
- Optimize: Add GptModel.class list some available models for request; You can choose models instead of type the model name。
version before 1.3.1
new CreateCompletionRequest().model("text-davinci-003");
version after 1.3.1
new CreateCompletionRequest().model(GptModel.text_davinci_003);
- New: chat apis
- New: audio apis
- Optimize: Image apis added image verification(square,4mb,png)
- Optimize: When the http code is not 200, the error message will be thrown through a RuntimeException
- Fix bug: Fix the problem of garbled code when using Chinese
This project is an open-sourced software licensed under the MIT license.