Skip to content

multiPrime is an error-tolerant primer set design tool for large-scale sequences (e.g. Virus). It enables a broader-sepctrum coverage while maintains high multiplexing compatibility.

License

Notifications You must be signed in to change notification settings

Y-antian/multiPrime

 
 

Repository files navigation

multiPrime: version 2.0.3

Multi PCR primer pairs design processing pipeline

MultiPrime is a pipeline designed for broad-spectrum detection of target sequences using tNGS. It is implemented in Python and Snakemake and takes a FASTA format file as input. The pipeline has three main steps: classification by identity, primer design, and primer set combination. In the classification step, redundant sequences are removed and clusters are formed by identity. Rare sequence clusters are compared to others by average nucleotide identity, and if they are deemed similar enough, they are merged. In the primer design step, multi-alignment is performed using MUSCLE or MAFFT, and candidate primers are designed using the nearest-neighbor model. Primer pairs are selected based on PCR product length, melting temperature, dimer examination, coverage with errors, and other factors. Finally, a greedy algorithm is used to combine primer pairs into a minimal primer set according to dimer examination.

multiPrime1: Degenerate primer design by DEGEPRIME (MC-DPD).

mulitPrime2: Degenerate primer design by multiPrime-core (MC-EDPD or MC-DPD).

Scripts and pipelines provided in this repository aid to design multiplex PCR primer and return a minimal primerset for multi-PCR. It contains all scripts to allow a self-assembled processing and additionally provides pipeline scripts that run the entire processing automatically.

Requirements

To run this pipeline, your computer requires 30 GB of available memory (RAM) to process larger number of sequence (e.g. 1,000,000). We don't suggest that Input sequences contains those sequences whose average length is greater than 100K, if necessary, you'd better set the Maxseq in yaml file as small as possible, but do not smaller than 200. Snakemake was used to facilitate the automated execution of all analysis steps. The easiest way to make use of the pipeline is to set up a python 3.9 virtual environment and run the pipeline is this environment.

Download/Provide all necessary files:

Cross validation

DEGEPRIME-1.1.0: DOI: 10.1128/AEM.01403-14; "DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies." Links: https://github.com/EnvGen/DegePrime; please move this directory into scripts.

mfeprimer-3.2.6: DOI: 10.1093/nar/gkz351; Please cite: "MFEprimer-3.0: quality control for PCR primers." please move this it into scripts. Please add "execute" to mfeprimer-3.2.6

Programs we employed:

biopython: Not required in v1.0.1 and the subsequent version.

MUSCLE: It is already in the requirement.txt. version=v3.8.1551. http://www.drive5.com/muscle This software is donated to the public domain. Please cite: Edgar, R.C. Nucleic Acids Res 32(5), 1792-97.

MAFFT: It is already in the requirement.txt. version=v7.508 (2022/Sep/07). Please cite: "MAFFT multiple sequence alignment software version 7: improvements in performance and usability".

fastANI: It is already in the requirement.txt. version=version 1.33. Please cite: "FastANI, Mash and Dashing equally differentiate between Klebsiella species."

blast+: It is already in the requirement.txt. version=BLAST 2.13.0+. Links: https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastNews.

bowtie2: It is already in the requirement.txt. version=version 2.2.5. DOI:10.1038/nmeth.1923; Please cite: "Fast gapped-read alignment with Bowtie 2." Links: https://www.nature.com/articles/nmeth.1923

snakemake

Snakemake is a workflow management system that helps to create and execute data processing pipelines. It requires python3 and dependent environment (multiPrime == multiPrime2) can be most easily installed via the bioconda package of the python anaconda distribution.

conda create -n multiPrime -c bioconda -c conda-forge --file requirement.txt

if conflict:

conda create -n multiPrime -c bioconda -c conda-forge --file requirement2.txt

Activate the environment

source activate multiPrime

To exit the environment (after finishing the usage of the pipeline), just execute

source deactivate

Run the pipeline

Configure input parameters

The working directory contains files named multiPrime.yaml and multiPrime2.yaml. These are the central file in which all user settings, paramter values and path specifications are stored. multiPrime.yaml employs DEGEPRIME-1.1.0 for maximum coverage degenerate primer design (MC-DPD), multiPrime2.yaml use multiPrime-core.py for MC-DPD or MC-DPD with error. During a run, all steps of the pipeline will retrieve their paramter values from these file. It follows the yaml syntax (find more information about yaml and it's syntax here) what makes it easy to read and edit. The main principles are:

  • everything that comes after a # symbol is considered as comment and will not be interpreted
  • paramters are given as key-value pair, with key being the name and value the value of any paramter

Before starting the pipeline, open the multiPrime.yaml configuration file and set all options according as required. This should at least include:

  • name of the input directory - where are your input fasta files stored -input_dir: ["abs_path_to_input_dir"]
  • name of the output directory - where should the pipeline store the output files (the direcotry is created if not existing) -results_dir: ["abs_path_to_results_dir"]
  • name of the log directory - where should the pipeline store the log files -log_dir: ["abs_path_to_log_dir"]
  • name of the scripts directory - where should the pipeline store the scripts files -scripts_dir: ["abs_path_to"]/multiPrime/scripts
  • name(s) of your input samples - please note: If your sample is named sample1.fa then sample1 will be kept as naming scheme throughout the entire run to indicate output files that belong to this input file, e.g. the pipeline will create a file called sample1.fa. If you have multiple input files, just follow the given pattern with one sample name per line (and a dash that indicates another list item).
  • identity - threshold for classification. please note: If you set 1, multiPrime will design candidate primer pairs for each fasta in input files. Suggestion: 0.7-0.8.

Start a run

Once you set up your configuration file, running the pipeline locally on your computer is as easy as invoking:

sh run.sh

minimal degeneracy degenerate primer design (MC-DPD):

snakemake --configfile multiPrime.yaml -s multiPrime.py --cores 10 --resources disk_mb=80000

minimal degeneracy degenerate primer design with errors (MC-EDPD) or MC-DPD. It depends on the parameter in multiPrime2.yaml. MC-DPD when you set variation=0.

snakemake --configfile multiPrime2.yaml -s multiPrime2.py --cores 10 --resources disk_mb=80000

Start a run independently

If you want to run python script locally on your computer independently. It is as easy as invoking:

python {path to script}/{target}.py --help

or

python {path to script}/{target}.py

or

pip install multiPrime
multiPrime --help

multiPrime package contains primer design; primer pair selection and primer pair coverage statistics, more functions will be improved in the future. All manual instruction for multiPrime can be found in here.

For example:

MC-DPD (--variation 0) or MC-EDPD (--variation 1 or 2, we do not suggest you set --variation greater than 2, because amplification efficiency was severely inhibited when there are 3 mismathes).

python scripts/multiPrime-core.py
Usage: multiPrime-core.py -i input -o output -p 20
               Options: { -l [18] -n [4] -d [10] -v [1] -e [3.6] -g [0.2,0.7] -f [0.8] -c [4] -p [10] -a [4] }

Options:
-h, --help            show this help message and exit
-i INPUT, --input=INPUT
                      Input file: multi-alignment output (muscle or others).
-l PLEN, --plen=PLEN  Length of primer. Default: 18.
-n DNUM, --dnum=DNUM  Number of degenerate. Default: 4.
-d DEGENERACY, --degeneracy=DEGENERACY
                      degeneracy of primer. Default: 10.
-v VARIATION, --variation=VARIATION
                      Max mismatch number of primer. Default: 1.
-e ENTROPY, --entropy=ENTROPY
                      Entropy is actually a measure of disorder. This
                      parameter is used to judge the window is conservation or not. 
  		Entropy of primer-length window. Default: 3.6.
-g GC, --gc=GC        Filter primers by GC content. Default [0.2,0.7].
-s SIZE, --size=SIZE  Filter primers by mini PRODUCT size. Default 100.
-f FRACTION, --fraction=FRACTION
                      Filter primers by match fraction. Default: 0.8.
-c COORDINATE, --coordinate=COORDINATE
                      Mismatch index is not allowed to locate in start or
                      stop region. otherwise, it won't be regard as the mis-
                      coverage. With this param, you can control the index
                      of Y-distance (number and position of mismatch) when calculate
                      coverage with error.Default: 4.
-p PROC, --proc=PROC  Number of process to launch. Default: 20.
-a AWAY, --away=AWAY  Filter hairpin structure, which means distance of the
                      minimal paired bases. Default: 4. Example:(number of
                      X) AGCT[XXXX]AGCT. Primers should not have
                      complementary sequences (no consecutive 4 bp
                      complementarities),otherwise the primers themselves
                      will fold into hairpin structure.
-o OUT, --out=OUT     Output file: candidate primers. e.g.
                      [*].candidate.primers.txt.

Get candidate degenerate primer with high (error) coverage:

python scripts/get_multiPrime.py
Usage: get_multiPrime.py -i input -r sequence.fa -o output
               Options: {-f [0.6] -m [500] -n [200] -e [4] -p [9] -s [250,500] -g [0.2,0.7] -d [4] -a ","}.

Options:
-h, --help            show this help message and exit
-i INPUT, --input=INPUT
                      Input file: degeprimer out.
-r REF, --ref=REF     Reference sequence file: all the sequence in 1 fasta,
                      for example: (Cluster_96_171.fa).
-g GC, --gc=GC        Filter primers by GC content. Default [0.2,0.7].
-f FRACTION, --fraction=FRACTION
                      Filter primers by match fraction. Default: 0.6.
                      Sometimes you need a small fraction to get output.
-e END, --end=END     Filter primers by degenerate base position. e.g. [-t
                      4] means I dont want degenerate base appear at the end
                      four bases when primer pre-filter. Default: 4.
-p PROC, --proc=PROC  Number of process to launch.  default: 10.
-s SIZE, --size=SIZE  Filter primers by PRODUCT size. Default [250,500].
-d DIST, --dist=DIST  Filter param of hairpin, which means distance of the
                      minimal paired bases. Default: 4. Example:(number of
                      X) AGCT[XXXX]AGCT.
-a ADAPTOR, --adaptor=ADAPTOR
                      Adaptor sequence, which is used for NGS next. Hairpin
                      or dimer detection for [adaptor--primer]. For example: 
                      TCTTTCCCTACACGACGCTCTTCCGATCT,TCTTTCCCTACACGACGCTCTTCCGATCT 
                      (Default). If you dont want adaptor,
                      use [","]
-m MAXSEQ, --maxseq=MAXSEQ
                      Limit of sequence number. Default: 500. If 0, then all
                      sequence will take into account. This param should
                      consistent with [max_seq] in multi-alignment [muscle].
-o OUT, --out=OUT     Output file: candidate primers. e.g.
                      [*].candidate.primers.txt.

Extract primers from ONT reads. FindONTprimerV2.py = FindONTprimerV3.py:

python scripts/FindONTprimerV3.py
Usage: FindONTprimerV3.py -i [input] -s [primer set] -p [20] -l [primer length] -m [0.6] -f [fq] -o [output].

Options:
-h, --help            show this help message and exit
-i INPUT, --input=INPUT
                      Input file: fastq or fasta or fq.gz or fa.gz.
-s SET, --set=SET     primer set file.
-p NPROC, --nproc=NPROC
                      Primer set file. option. Default: 10
-l LEN, --len=LEN     Primer length. Default: 18
-m MIN_IDENT, --min_ident=MIN_IDENT
                      min identity. Default: 0.6
-f FORMAT, --format=FORMAT
                      Input format can be fasta, fastq, fa.gz and fq.gz. Default: fastq
-o OUT, --out=OUT     Output file: candidate primers. e.g.
                      [*].candidate.primers.txt.

Extract PCR products with perfect match:

python scripts/extract_PCR_product.py
Usage: extract_PCR_product.py -i [input] -r [reference] -p [10] -f [format] -o [output]

Options:
--version             show program's version number and exit
-h, --help            show this help message and exit
-r REF, --ref=REF     reference file: template fasta or reference fasta.
-i INPUT, --input=INPUT
                      Primer file. One of the followed three types:
                      final_maxprimers_set.xls   primer.fa
                      primer_F,primer_R.
-f FORMAT, --format=FORMAT
                      Format of primer file: xls or fa or seq; default: xls.
                      xls: final_primer_set.xls, output of multiPrime.  fa:
                      fasta format.  seq: sequence format, comma seperate.
                      e.g. primer_F,Primer_R.
-o OUT, --out=OUT     Output_dir. default: PCR_product.
-p PROCESS, --process=PROCESS
                      Number of process to launch.  default: 10.
-s STAST, --stast=STAST
                      Stast information: number of coverage and total.
                      default: Coverage.xls

Get primer information of PCR products with mismatch

python scripts/primer_coverage_validation_by_BWT.py
Usage: primer_coverage_validation_by_BWT.py -i [input] -r [bowtie index] -l [150,2000] -p [10]-o [output]

Options:
-h, --help            show this help message and exit
-i INPUT_FILE, --input=INPUT_FILE
                      input file: primer.fa.
-r REF, --ref=REF     reference file: bowtie index.
-l LEN, --len=LEN     Length of primer, which is used for mapping. Default:
                      18
-t TERM, --term=TERM  Position of mismatch is not allowed in the 3 term of
                      primer. Default: 4
-s SIZE, --s=SIZE     Length of PCR product, default: 150,2000.
-p PROC, --proc=PROC  Number of process. Default: 20
-b BOWTIE, --bowtie=BOWTIE
                      bowtie or bowtie2 was employed for mapping. Default:
                      bowtie2
-m SEEDMMS, --seedmms=SEEDMMS
                      Bowtie: Mismatches in seed (can be 0 - 3, default: -n
                      1).Bowtie2: Gap or mismatches in seed (can be 0 - 1,
                      default: -n 1).
-o OUT, --out=OUT     Prodcut of PCR product with primers.

Others ...

Output

logs: log file of the multiPrime.py

results: results directory

-cluster.identities: identity of each sequence.

-cluster.txt: cluster information. for example: Cluster_0_222.fa, 0 ==> cluster rank; 222 ==> sequence number.

-history.txt:  history of clusters with rare sequence numbers are compared with others by average nucleotide identity.

-Total_fa: genome file and cluster of genome file.

-Clusters_fa: genome file split by each cluster.
	--*.fa: fasta of each cluster
	--*.tfa: top N {default: 500 randomly selected. Always contain the representative seq} fasta of each cluster
	--*.txt: accession id of each cluster
	--*.db: directory of database (for bowtie2).
	--*.number: number of fasta in each cluster

-Clusters_msa: alginment by muscle
	--*.tmsa: muscle output of the top N {default: 500 randomly selected. Always contain the representative seq}

-Clusters_trim_msa: trimmed alignment by degePrimer
	--*.trim.tmsa: trimmed muscle by degePrimer

-Clusters_primer: get_degePrimer from degePrimer out
	--*.out: paired primers designed by the top N {default: 500} fasta
	--*.gap_seq_id_json: Positions and non-contained sequences caused by gap.
	--*.non_coverage_seq_id_json: Positions and non-contained sequences caused by others.

-Clusters_cprimer: candidate primers for each cluster.
	--*.bed: candidate PCR product (1 mismatch and mismatch position must 4bp away from 3'end at least.)
	--*.fa: candidate primers in fa format
	--*.txt: candidate primers in txt format (1 line)
	--*.Check: tmp file; primers filter by bowtie2 (1 mismatch and mismatch position must 4bp away from 3'end at least.)

-Primers_set:
	--candidate_primers_sets.txt: all candidate primers in each cluster
	--candidate_primers_sets: directory contain all candidate primers in fasta
	--sort.candidate_primers_sets.txt: sorted by the number of candidate primers in each line (cluster)
	--final_maxprimers_set.fa: fasta format of primers set for multiPCR
	--final_maxprimers_set.xls: primers information of primers set
	--final_maxprimers_set.next.xls: primer set 2
	--Coverage_stast.xls: coverage of all primers in primer set (perfect match)
	--final_maxprimers_set.fa.dimer: dimer check by mfePrimer 
	--final_maxprimers_set.fa.hairpin: hairpin check by mfePrimer
	--PCR_product: perfect PCR product of each primer

-Core_primers_set:
	--BWT_coverage: coverage of all primers in core primer set (up to 2-mismatch)
	--core_candidate_primers_sets.txt: core candidate primers in each cluster
	--core_candidate_primers_sets:  directory contain all core candidate primers in fasta
	--sort.core_candidate_primers_sets.txt: sorted by the number of core candidate primers in each line (cluster)
	--core_final_maxprimers_set.fa: fasta format of core primers set for multiPCR
	--core_final_maxprimers_set.xls: primers information of core primers set
	--core_final_maxprimers_set.next.xls: primer set 2
	--core_Coverage_stast.xls: coverage of all primers in core primer set (perfect match)
	--core_candidate_primers_sets.fa: core primer set fasta
	--core_candidate_primers_sets.number: candidate primer number of each core cluster
	--core_final_maxprimers_set.fa.dimer: dimer check by mfePrimer
	--core_final_maxprimers_set.fa.hairpin: hairpin check by mfePrimer
	--core_PCR_product: core PCR product of each primer

Contact

Please send comments, suggestions, bug reports and bug fixes to [email protected]

Todo

This repository is updated frequently. Expect breaking changes. More functions will be improved in the future and a new version is comming.

About

multiPrime is an error-tolerant primer set design tool for large-scale sequences (e.g. Virus). It enables a broader-sepctrum coverage while maintains high multiplexing compatibility.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.3%
  • Perl 4.5%
  • Shell 0.2%