Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/random acceptence patterns #9

Open
wants to merge 5 commits into
base: dev
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 59 additions & 15 deletions agents/super_agent/super_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,8 @@ def __init__(self):
self._me = None
self._profile_interface: ProfileInterface = None
self._progress = None
self._util_threshold_calculator = None
self.pick_acceptence_pattern(random.randint(0, 4))
self._protocol = None
self._parameters: Parameters = None
self._utility_space = None
Expand Down Expand Up @@ -211,7 +213,10 @@ def notifyChange(self, info: Inform):
self._progress = self._progress.advance()
# self.initialize_storage(self._opponent_name)
action = self._my_turn()
val(self.getConnection()).send(action)
try:
self.getConnection().send(action)
except Exception as ex:
self.getReporter().log(logging.WARNING, "action:{}:{}".format(action, ex))

elif isinstance(info, Finished):
# TODO:: handle NEGOTIATIONDATA
Expand Down Expand Up @@ -338,30 +343,71 @@ def is_good(self, bid):
avg_max_utility = self._persistent_data.get_avg_max_utility(self._opponent_name) \
if self._persistent_data._known_opponent(self._opponent_name) \
else self._avg_utility
self._util_threshold = max_value - (
max_value - 0.55 * self._avg_utility - 0.4 * avg_max_utility + 0.5 * pow(self._std_utility, 2)) * \
(math.exp(self.alpha * self._progress.get(get_ms_current_time())) - 1) / (math.exp(
self.alpha) - 1)

self._util_threshold = self._util_threshold_calculator(max_value, avg_max_utility)
if self._util_threshold < self._min_utility:
self._util_threshold = self._min_utility
return float(self.calc_utility(bid)) >= self._util_threshold

def pick_acceptence_pattern(self, pattern):
patterns_desc = {0: 'Noraml Decay', 1: 'Decaying with sinus', 2: 'Decaying with step (alpha changing)', 3:'Decaying with cosinus', 4:'Linear decay'}
self.getReporter().log(logging.INFO, f"Acceptence pattern selected {patterns_desc[pattern]}")
if pattern == 0:
self._util_threshold_calculator = lambda max_value, avg_max_utility: max_value - (
max_value - 0.55 * self._avg_utility - 0.4 * avg_max_utility + 0.5 * pow(self._std_utility, 2)) * \
(math.exp(
self.alpha * self._progress.get(
get_ms_current_time())) - 1) / (
math.exp(
self.alpha) - 1)
elif pattern == 1:
self._util_threshold_calculator = lambda max_value, avg_max_utility: max_value - (
max_value - 0.55 * self._avg_utility - 0.4 * avg_max_utility + 0.5 * pow(self._std_utility, 2)) * \
(math.exp(
self.alpha * self._progress.get(
get_ms_current_time())) - 1) / (
math.exp(
self.alpha) - 1) - (
math.sin(5 * (
self._progress.get(
get_ms_current_time()))) / 20)
elif pattern == 2:
self._util_threshold_calculator = lambda max_value, avg_max_utility: max_value - (
max_value - 0.55 * self._avg_utility - 0.4 * avg_max_utility + 0.5 * pow(self._std_utility, 2)) * \
(math.exp(
self.alpha * self._progress.get(
get_ms_current_time())) - 1) / (
math.exp(
self.alpha) - 1) if self._progress.get(
get_ms_current_time()) < 0.7 else max_value - (
max_value - 0.55 * self._avg_utility - 0.4 * avg_max_utility + 0.5 * pow(self._std_utility, 2)) * \
(math.exp(3 * self._progress.get(get_ms_current_time())) - 1) / (
math.exp(3) - 1)

elif pattern == 3:
self._util_threshold_calculator = lambda max_value, avg_max_utility: max_value - (
max_value - 0.55 * self._avg_utility - 0.4 * avg_max_utility + 0.5 * pow(self._std_utility, 2)) * \
(math.exp(
self.alpha * self._progress.get(
get_ms_current_time())) - 1) / (
math.exp(
self.alpha) - 1) - (
math.cos(5 * (
self._progress.get(
get_ms_current_time()))) / 20)
elif pattern == 4:
self._util_threshold_calculator = lambda max_value, avg_max_utility: max_value - (
max_value - 0.55 * self._avg_utility - 0.4 * avg_max_utility + 0.5 * pow(self._std_utility, 2)) * (self._progress.get(
get_ms_current_time())/2)

def first_is_good_idx(self):
for i in range(len(self._sorted_bid_list)):
if not self.is_good(self._sorted_bid_list[i]):
return i
return len(self._sorted_bid_list) - 1

def filter_only_op_good(self, bid_list):
bid_good_for_both = []
for bid in bid_list:
if self.is_op_good(bid):
bid_good_for_both.append(bid)
return bid_good_for_both

def on_negotiation_near_end(self):
slice_idx = self.first_is_good_idx()
# print("A:{}".format(self._len_sorted_bid_list))
end_slice = int(min(slice_idx + 0.005 * self._len_sorted_bid_list - 1, self._len_sorted_bid_list - 1))
idx = random.randint(0, end_slice)
if self._progress.get(get_ms_current_time()) > 0.99 and self.is_good(self._best_offer_bid):
Expand Down Expand Up @@ -395,8 +441,6 @@ def _find_bid(self):
self._best_offer_bid = self._last_received_bid
elif self.cmp_utility(self._last_received_bid, self._best_offer_bid):
self._best_offer_bid = self._last_received_bid
# if self.is_social_welfare_time():
# self.on_negotiation_social_welfare()
if self.is_near_negotiation_end():
bid = self.on_negotiation_near_end()
else:
Expand Down
47 changes: 25 additions & 22 deletions run_tournament.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,29 +17,32 @@
# You need to specify a time deadline (is milliseconds (ms)) we are allowed to negotiate before we end without agreement.
tournament_settings = {
"agents": [
{"class": "agents.CSE3210.agent11.agent11.Agent11"},
{"class": "agents.CSE3210.agent14.agent14.Agent14"},
{"class": "agents.CSE3210.agent18.agent18.Agent18"},
{"class": "agents.CSE3210.agent19.agent19.Agent19"},
{"class": "agents.CSE3210.agent2.agent2.Agent2"},
{"class": "agents.CSE3210.agent22.agent22.Agent22"},
{"class": "agents.CSE3210.agent24.agent24.Agent24"},
{"class": "agents.CSE3210.agent25.agent25.Agent25"},
{"class": "agents.CSE3210.agent26.agent26.Agent26"},
{"class": "agents.CSE3210.agent27.agent27.Agent27"},
{"class": "agents.CSE3210.agent29.agent29.Agent29"},
{"class": "agents.CSE3210.agent3.agent3.Agent3"},
{"class": "agents.CSE3210.agent32.agent32.Agent32"},
{"class": "agents.CSE3210.agent33.agent33.Agent33"},
{"class": "agents.CSE3210.agent41.agent41.Agent41"},
{"class": "agents.CSE3210.agent43.agent43.Agent43"},
{"class": "agents.CSE3210.agent50.agent50.Agent50"},
{"class": "agents.CSE3210.agent52.agent52.Agent52"},
{"class": "agents.CSE3210.agent55.agent55.Agent55"},
{"class": "agents.CSE3210.agent58.agent58.Agent58"},
{"class": "agents.CSE3210.agent61.agent61.Agent61"},
{"class": "agents.CSE3210.agent64.agent64.Agent64"},
{"class": "agents.CSE3210.agent67.agent67.Agent67"},
{"class": "agents.CSE3210.agent68.agent68.Agent68"},
{"class": "agents.CSE3210.agent7.agent7.Agent7"},
{
"class": "agents.boulware_agent.boulware_agent.BoulwareAgent",
},
{
"class": "agents.conceder_agent.conceder_agent.ConcederAgent",
},
{
"class": "agents.hardliner_agent.hardliner_agent.HardlinerAgent",
},
{
"class": "agents.linear_agent.linear_agent.LinearAgent",
},
{
"class": "agents.random_agent.random_agent.RandomAgent",
},
{
"class": "agents.stupid_agent.stupid_agent.StupidAgent",
},
{
"class": "agents.template_agent.template_agent.TemplateAgent",
"parameters": {"storage_dir": "agent_storage/TemplateAgent"},
},
{
"class": "agents.super_agent.super_agent.SuperAgent",
"parameters": {"storage_dir": "agent_storage/SuperAgent"},
}
Expand Down