Number: 74
Name: OctNet: Learning Deep 3D Representations at High Resolutions
Publication category: arxiv
Publication Name: CVPR
Issuing Time: 2016_11_15
Contribution: 提出了OctNet神经网络架构
Difficulty:
Result: IOU为59.2
category: 深度学习算法:基于体素,
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/OctNet%20Learning%20Deep%203D%20Representations%20at%20High%20Resolutions.pdf
Number: 73
Name: Deep Convolutional Networks on Graph-Structured Data
Publication category:
Publication Name: Arxiv
Issuing Time: 2015_06_16
Contribution: 提出无监督和新的监督图估计策略与监督图形卷积相结合
Difficulty:
Result: 在ImageNet数据集上,准确度为71.998
category: 深度学习算法:Non-Euclidean networks,将输入表面表示为图形(例如,多边形网格)
或基于点的连通图),将图转换为它的频谱表示,然后执行卷积谱域
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/Deep%20Convolutional%20Networks%20on%20Graph-Structured.pdf
Number: 72
Name: FusionNet: 3D Object Classification Using Multiple Data Representations
Publication category:
Publication Name: CVPR
Issuing Time: 2016_07_19
Contribution: 结合了形状体积和多视图的分类分数网络
Difficulty:
Result: 在ModelNet40数据集上,准确度为90.80
category: 深度学习算法:2D-3D联合网络
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/FusionNet%20%203D%20Object%20Classification%20Using%20Multiple%20Data%20Representations.pdf
Number: 71
Name: 3D Object Classification via Spherical Projections
Publication category: IEEE
Publication Name: 3D Vision 2017
Issuing Time: 2017_10_10
Contribution: 介绍了一种新的3D对象分类方法,主要想法是将3D对象投影到以重心为中心并
形成的球形域神经网络对球形投影进行分类
Difficulty: 占用的分辨率网格很低
Result: 在ModelNet40数据集上准确率为94.24
category: 深度学习算法:多视图网络
缺点:2D投影可能会导致由于自我遮挡而导致的表面信息损失,而观点选择通常通过启发式方法进行
对于给定的任务不一定是最佳的,但是球面结合了多视图和3D
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/3D%20Object%20Classification%20via%20Spherical%20Projections.pdf
Number: 70
Name: 3D Shape Segmentation with Projective Convolutional Networks
Publication category: IEEE
Publication Name: CVPR
Issuing Time: 2017_07_21
Contribution: 介绍了一种深度学习分割架构
Difficulty: 现有的语义推理技术对于3D几何形状数据大多依赖于启发式处理阶段和手工调整的几何描述符
Result: 关键思想是将基于图像的完全卷积网络结合起来基于视图的推理,具有基于表面的投影图层
聚合多个视图的FCN输出和a基于表面的CRF有利于相干形状分割
category: 深度学习算法:多视图网络
缺点:2D投影可能会导致由于自我遮挡而导致的表面信息损失,而观点选择通常通过启发式方法进行
对于给定的任务不一定是最佳的
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/3D%20Shape%20Segmentation%20with%20Projective%20Convolutional%20Networks.pdf
Number: 69
Name: Volumetric and Multi-View CNNs for Object Classification on 3D Data
Publication category: IEEE
Publication Name: CVPR
Issuing Time: 2016
Contribution: 提出两种新的体积结构CNNs,volumetric CNNs:MVCNN和 multi-view CNNs:MVCNN-MultiRe
Difficulty: 现有的体积CNN架构和方法无法充分利用3D表示的力量
Result: 在ModelNet40数据集上MVCNN的ACA为86.0,MVCNN-MultiRe的ACA为85.6
category: 深度学习算法:多视图网络
缺点:2D投影可能会导致由于自我遮挡而导致的表面信息损失,而观点选择通常通过启发式方法进行
对于给定的任务不一定是最佳的
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/Volumetric%20and%20Multi-View%20CNNs%20for%20Object%20Classification%20on%203D%20Data.pdf
Number: 68
Name: GIFT: A Real-time and Scalable 3D Shape Search Engine
Publication category: IEEE
Publication Name: CVPR
Issuing Time: 2016
Contribution: 基于3D形状的投影图像的引擎,提出了一个实时3D形状搜索:GIFT
Difficulty: 多数基于投影的检索系统受到影响计算成本高,因此不能满足基本要求
搜索引擎的可扩展性
Result: 在ModelNet40数据集上,AUC为83.10%,MAP为81.94%
category: 深度学习算法:多视图网络
缺点:2D投影可能会导致由于自我遮挡而导致的表面信息损失,而观点选择通常通过启发式方法进行
对于给定的任务不一定是最佳的
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/GIFT%20A%20Real-time%20and%20Scalable%203D%20Shape%20Search%20Engine.pdf
Number: 67
Name: SPLATNet: Sparse Lattice Networks for Point Cloud Processing
Publication category:
Publication Name: CVPR 2018
Issuing Time: 2018
Contribution: 提出了SPLATNet深度学习框架,
总结了三维视觉的前人工作
Difficulty: 直接应用在点云上
Result: mIoU为83.7
category: 深度学习算法:基于二维RGB图像与三维点云学习
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/SPLATNet%20Sparse%20Lattice%20Networks%20for%20Point%20Cloud%20Processing.pdf
Number: 66
Name: SEMANTIC3D.NET: A NEW LARGE-SCALE POINT CLOUD CLASSIFICATION BENCHMARK
Publication category:
Publication Name: arXiv preprint
Issuing Time: 2017_04_12
Contribution: 提出了一种新的3D点云分类基准数据集 SEMANTIC3D.NET,其中包含超过40亿个手动标记点
作为深度学习方法的输入
Difficulty: 解决了语义分割或对象检测在图像中,由于缺乏训练数据带来的问题
category: 数据集
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/SEMANTIC3D.NET%20%20A%20NEW%20LARGE-SCALE%20POINT%20CLOUD%20CLASSIFICATION.pdf
Number: 65
Name: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
Publication category: IEEE
Publication Name: CVPR 2017
Issuing Time: 2017_07_01
Contribution: 介绍了ScanNet神经网络架构,设计了
易于使用且可扩展的RGB-D捕获系统这包括自动化表面重建和众包语义标注
Difficulty: 在RGB-D场景理解的背景下,目前的数据集涵盖的数据非常少
category: 神经网络算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_21/ScanNet%20Richly-annotated%203D%20Reconstructions%20of%20Indoor%20Scenes.pdf
Number: 64
Name: 平面舱壁类型的船舱点云分割方法
Publication category: EI
Publication Name: 中国激光
Issuing Time: 2017-07-06
Contribution: 提出了一种适用于平面舱壁类型船舱点云的分割方法
Difficulty: 针对船舱复杂构件点云提取存在人工成本高、效率低的问题
Result: 该方法能够从不同结构的船舱散乱点云中快速、准确地自动分割出主要构
件点云,可靠性强,具有较高的实用价值
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_19/%E5%B9%B3%E9%9D%A2%E8%88%B1%E5%A3%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%88%B9%E8%88%B1%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95_%E6%9D%A8%E6%B3%BD%E9%91%AB.pdf
Number: 63
Name: 一种密集管道点云数据自动分割算法
Publication category: EI
Publication Name: 中国激光
Issuing Time: 2018-07-26
Contribution: 提出了一种针对密集圆形管道点云数据的自动分割算法
Difficulty: 在快速采集数据的同时带来了数据冗余的问题,而点云数据分割
方法可以有效兼顾数据采集速度和数据量的问题
Result: 提出的自动分割算法在处理大小为6m×12m×16m 的点云空间数据时,
4线程并行计算仅耗时9s,精确率达到90%以上
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_19/%E4%B8%80%E7%A7%8D%E5%AF%86%E9%9B%86%E7%AE%A1%E9%81%93%E7%82%B9%E4%BA%91%E6%95%B0%E6%8D%AE%E8%87%AA%E5%8A%A8%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95_%E9%BB%84%E5%87%AF.pdf
Number: 62
Name: 一种新的点云平面混合分割方法
Publication category: EI
Publication Name: 武汉大学学报(信息科学版)
Issuing Time: 2013-05-05
Contribution: 提出了基于八叉树遴选种子,将区域增长与
随机采样一致相结合的点云平面分割方法
Difficulty: 解决区域增长方法中种子平面的自动可靠选择问题
Result: 同时提高点云平面分割效率与可靠性
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_19/%E4%B8%80%E7%A7%8D%E6%96%B0%E7%9A%84%E7%82%B9%E4%BA%91%E5%B9%B3%E9%9D%A2%E6%B7%B7%E5%90%88%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95_%E9%97%AB%E5%88%A9.pdf
Number: 61
Name: 大场景内建筑物点云提取及平面分割算法
Publication category: EI
Publication Name: 中国激光
Issuing Time: 2015-09-10
Contribution: 提出了一种利用半径渐变的主成分分析法确定局部特征,并依此完成
区域生长进而对建筑物进行平面分割和优化的新方法
Difficulty: 解决了传统区域增长法不稳定的问题
Result: 能快速有效提取大场景中的建筑物目标进行分割,提高了建筑物点云平面分割的精确性和可靠性
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_19/%E5%A4%A7%E5%9C%BA%E6%99%AF%E5%86%85%E5%BB%BA%E7%AD%91%E7%89%A9%E7%82%B9%E4%BA%91%E6%8F%90%E5%8F%96%E5%8F%8A%E5%B9%B3%E9%9D%A2%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95_%E5%8D%A2%E7%BB%B4%E6%AC%A3.pdf
Number: 60
Name: 铁路场景三维点云分割与分类识别算法
Publication category: EI
Publication Name: 仪器仪表学报
Issuing Time: 2017-09-15
Contribution: 提出基于法线方向一致性的区域生长分割算法
进行铁路场景点云分割,有效解决了复杂场景单物体点云分割问题,
总结了前人的分割算法
Difficulty:
Result: 本文算法对铁路场景3类典型物体点云的分类识别准确率
均在90%以上,能够满足铁路重点地段异物侵入监测的需求
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_19/%E9%93%81%E8%B7%AF%E5%9C%BA%E6%99%AF%E4%B8%89%E7%BB%B4%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2%E4%B8%8E%E5%88%86%E7%B1%BB%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95_%E9%83%AD%E4%BF%9D%E9%9D%92.pdf
Number: 59
Name: 基于自适应角度的三维点云分割方法
Publication category: 北大中文核心
Publication Name: 计算机科学
Issuing Time: 2017-11-15
Contribution: 提出一种基于自适应角度的三维点云切割算法,
总结了传统分割算法的前人工作
Difficulty: 算法的关键环节在于确认模型的最佳
投射角度方向及角度大小,很难确定投射角度
Result: 对实际生产线上的应用进行了实验验证,证明了该方法是本可行
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_19/%E5%9F%BA%E4%BA%8E%E8%87%AA%E9%80%82%E5%BA%94%E8%A7%92%E5%BA%A6%E7%9A%84%E4%B8%89%E7%BB%B4%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95_%E5%8D%A2%E7%94%A8%E7%85%8C.pdf
Number: 58
Name: 基于三维形状匹配的点云分割
Publication category: 北大中文核心
Publication Name: 激光与光电子学进展
Issuing Time: 2018-07-15
Contribution: 创建了基于形状的点云数据分割方法 (ShapeSegment),
总结了点云分割算法的前人工作
Difficulty: 指导点云数据的精简和重建,从而提高点云数据的计算速度和准确度
Result: 可以有效的提取出被测对象的形状特征
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_19/%E5%9F%BA%E4%BA%8E%E4%B8%89%E7%BB%B4%E5%BD%A2%E7%8A%B6%E5%8C%B9%E9%85%8D%E7%9A%84%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2_%E5%BC%A0%E5%9D%A4.pdf
Number: 57
Name: 面向点云的三维物体识别方法综述
Publication category: 北大中文核心
Publication Name: 计算机科学
Issuing Time: 2017-09-15
Contribution: 对近年来面向点云数据的三维物体识别方法进行归纳和总结;然后,对已有方法
的优势及缺点进行分析;最后,指出点云物体识别中所面临的挑战及进一步的研究方向
Difficulty:
Result:
category: 综述
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_18/%E9%9D%A2%E5%90%91%E7%82%B9%E4%BA%91%E7%9A%84%E4%B8%89%E7%BB%B4%E7%89%A9%E4%BD%93%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95%E7%BB%BC%E8%BF%B0_%E9%83%9D%E9%9B%AF.pdf
Number: 56
Name: 三维点云数据分割原理及应用
Publication category:
Publication Name: 科技资讯
Issuing Time: 2017-08-23
Contribution: 较全面的总结了传统分割算法
Difficulty:
Result:
category: 分割算法综述
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_18/%E4%B8%89%E7%BB%B4%E7%82%B9%E4%BA%91%E6%95%B0%E6%8D%AE%E5%88%86%E5%89%B2%E5%8E%9F%E7%90%86%E5%8F%8A%E5%BA%94%E7%94%A8_%E5%B8%88%E5%9F%9F%E8%BD%A9.pdf
Number: 55
Name: 基于特征线的点云数据分割算法
Publication category:
Publication Name: 地理空间信息
Issuing Time: 2015-06-19
Contribution: 提出一种新的基于特征线的分割点云数据的方法 ,
总结了其他点云分割算法
Difficulty: 提高点云数据分割的效率和精确度
Result: 这种基于特征线的数据分割算法能够显著提高数据分割的精度
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_18/%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E7%BA%BF%E7%9A%84%E7%82%B9%E4%BA%91%E6%95%B0%E6%8D%AE%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95_%E5%BC%A0%E5%A4%A7%E9%B9%8F.pdf
Number: 54
Name: 一种融合多特征聚类集成的室内点云分割方法
Publication category: 北大中文核心
Publication Name: 计算机工程
Issuing Time: 2018-03-15
Contribution: 提出一种融合 2D 和 3D 多特征的近邻传播( AP) 聚类集成分割方法,
总结了其他传统点云分割算法
Difficulty: 特定场景下传统点云分割算法不精确及特征描述不全面的问题
Result: 算法相较传统的点云分割算法能更准确地区分室内复杂三维点云场景,并且具有更好的稳定性
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_18/%E4%B8%80%E7%A7%8D%E8%9E%8D%E5%90%88%E5%A4%9A%E7%89%B9%E5%BE%81%E8%81%9A%E7%B1%BB%E9%9B%86%E6%88%90%E7%9A%84%E5%AE%A4%E5%86%85%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95_%E6%9B%BE%E7%A2%A7.pdf
Number: 53
Name: 基于改进的区域生长三维点云分割
Publication category: 北大中文核心
Publication Name: 激光与光电子学进展
Issuing Time: 2017-12-08
Contribution: 提出一种改进的区域生长分割方法 ,
总结了前人的点云分割工作
Difficulty: 点云特征的不确定性及种子点选取不合理导致传统区域生长法局部分割性能不稳定
Result: 且解决了传统区域生长分割不稳定的问题,提高了点云分割的精确性和可靠性
category: 传统分割算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_18/%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E7%9A%84%E5%8C%BA%E5%9F%9F%E7%94%9F%E9%95%BF%E4%B8%89%E7%BB%B4%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2_%E6%9D%8E%E4%BB%81%E5%BF%A0.pdf
Number: 52
Name: 基于多光谱LiDAR数据的道路中心线提取
Publication category: 北大中文核心
Publication Name: 地球信息科学学报
Issuing Time: 2018-04-24
Contribution: 提出了雷达数据的道路中心线提取的方法
Difficulty: 城市三维激光点云中,道路与地面高程相差小、激光反射强度相近使得道路提取困难
Result: 以Waddenzee区域的多光谱机载点云数据进行实验验证,道路中心线提取结果的完整度达到94.15%,准确度达到97.95%,精度达到92.28%
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_18/%E5%9F%BA%E4%BA%8E%E5%A4%9A%E5%85%89%E8%B0%B1LiDAR%E6%95%B0%E6%8D%AE%E7%9A%84%E9%81%93%E8%B7%AF%E4%B8%AD%E5%BF%83%E7%BA%BF%E6%8F%90%E5%8F%96_%E8%A2%81%E9%B9%8F%E9%A3%9E.pdf
Number: 51
Name: 基于地物特征提取的车载激光点云数据分类方法
Publication category: 北大中文核心
Publication Name: 国土资源遥感
Issuing Time: 2012-02-27
Contribution: 提出了一种基于地物特征提取的点云数据分类方法
Difficulty: 与传统的激光点云数据分类算法中的基于回波强度或者灰度信息等单指标的分类方法有很大的不同
Result: 总体良好,但建筑物与交通指示牌之间存在错分,花坛和行道树分类存在一定的混淆现象
低矮地物( 花坛、路肩) 被划分为路面
category:
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_18/%E5%9F%BA%E4%BA%8E%E5%9C%B0%E7%89%A9%E7%89%B9%E5%BE%81%E6%8F%90%E5%8F%96%E7%9A%84%E8%BD%A6%E8%BD%BD%E6%BF%80%E5%85%89%E7%82%B9%E4%BA%91%E6%95%B0%E6%8D%AE%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95_%E6%9D%8E%E5%A9%B7.pdf
Number: 50
Name: 基于移动激光扫描点云特征图像和SVM的建筑物立面半自动提取方法
Publication category: 北大中文核心
Publication Name: 地球信息科学学报
Issuing Time: 2016-07-13
Contribution: 提出了一种基于移动激光扫描点云的建筑物立面半自动提取算法
Difficulty:
Result: 本算法能够较好地提取出建筑物立面,提取精度为84%,召回率为90%,数据修正后精度为88%,召回率为91%
category: 机器学习方法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_17/%E5%9F%BA%E4%BA%8E%E7%A7%BB%E5%8A%A8%E6%BF%80%E5%85%89%E6%89%AB%E6%8F%8F%E7%82%B9%E4%BA%91%E7%89%B9%E5%BE%81%E5%9B%BE%E5%83%8F%E5%92%8CSVM%E7%9A%84%E5%BB%BA%E7%AD%91%E7%89%A9%E7%AB%8B%E9%9D%A2%E5%8D%8A%E8%87%AA%E5%8A%A8%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95_%E5%BD%AD%E6%99%A8.pdf
Number: 49
Name: 基于车载激光点云的街景立面自动提取
Publication category:
Publication Name: 测绘与空间地理信息
Issuing Time: 2018-04-24
Contribution: 文提出一种适用于车载点云的街景立面的自动提取方法 ,
总结了点云分割的方法和前人的工作
Difficulty: 该算法对点稀疏的平面的提取效果不理想,对曲面的处理效果远不如平面,过程中会
将曲面截断或去除
Result: 在一定程度上提高了数据处理效率
category:
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_17/%E5%9F%BA%E4%BA%8E%E8%BD%A6%E8%BD%BD%E6%BF%80%E5%85%89%E7%82%B9%E4%BA%91%E7%9A%84%E8%A1%97%E6%99%AF%E7%AB%8B%E9%9D%A2%E8%87%AA%E5%8A%A8%E6%8F%90%E5%8F%96_%E8%80%BF%E9%9B%A8%E9%A6%A8.pdf
Number: 48
Name: 基于车载LiDAR点云的地物分类方法的研究
Publication category:
Publication Name: 测绘与空间地理信息
Issuing Time: 2017-02-25
Contribution: 提出了一种基于最大网格密度的近邻聚类的方法
Difficulty: 解决混杂着建筑物、地面点以及低等植被的散乱点云问题
Result: 实现了不同地物的分类,提高了运算效率,降低了错分率
category: 传统分割方法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_17/%E5%9F%BA%E4%BA%8E%E8%BD%A6%E8%BD%BDLiDAR%E7%82%B9%E4%BA%91%E7%9A%84%E5%9C%B0%E7%89%A9%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95%E7%9A%84%E7%A0%94%E7%A9%B6_%E9%82%B5%E5%B8%85.pdf
Number: 47
Name: 基于车载32线激光雷达点云的车辆目标识别算法
Publication category: 北大中文核心
Publication Name: 科学技术与工程
Issuing Time: 2018-02-18
Contribution: 提出识别车辆目标新算法
Difficulty: 道路边界两旁障碍物的干扰和点云数据量
Result: 该算法有效抑制了道路边界两旁障碍物的干扰,可以准确识别结构化道路区域内的车辆目标
category: 机器学习方法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_17/%E5%9F%BA%E4%BA%8E%E8%BD%A6%E8%BD%BD32%E7%BA%BF%E6%BF%80%E5%85%89%E9%9B%B7%E8%BE%BE%E7%82%B9%E4%BA%91%E7%9A%84%E8%BD%A6%E8%BE%86%E7%9B%AE%E6%A0%87%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95_%E5%AD%94%E6%A0%8B.pdf
Number: 46
Name: 基于Gradient Boosting的车载LiDAR点云分类
Publication category:
Publication Name: 地理信息世界
Issuing Time: 2016-06-25
Contribution: 提出了一种基于Gradient Boosting的点云自动分类方法
Difficulty: 基于预定义规则的方法往往难以适应不同数据。而半自动的方法尽管
由于人工干预能够取得较好的分类结果,但效率较低
Result: 选取另一较大区域的点云共312W点作为测试数据集,分类结果总体准确率达到了93.38%,耗时631s
category: 机器学习方法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_17/%E5%9F%BA%E4%BA%8EGradient_Boosting%E7%9A%84%E8%BD%A6%E8%BD%BDLiDAR%E7%82%B9%E4%BA%91%E5%88%86%E7%B1%BB_%E8%B5%B5%E5%88%9A.pdf
Number: 45
Name: 三维网格模型的分割及应用技术综述
Publication category: EI
Publication Name: 计算机辅助设计与图形学学报
Issuing Time: 2005-08-20
Contribution: 三维网格模型分割的定义、分类和应用情况做了简要回顾, 介绍并评价了几种典型的网格模型分割算法
Difficulty:
Result:
category: 传统分割算法综述
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E4%B8%89%E7%BB%B4%E7%BD%91%E6%A0%BC%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%88%86%E5%89%B2%E5%8F%8A%E5%BA%94%E7%94%A8%E6%8A%80%E6%9C%AF%E7%BB%BC%E8%BF%B0_%E5%AD%99%E6%99%93%E9%B9%8F.pdf
Number: 44
Name: 三角网格分割综述
Publication category: 北大中文核心
Publication Name: 中国图象图形学报
Issuing Time: 2010-02-15
Contribution: 对三角网路分割进行了详细的比较和论述。 并结合实际工作, 对网格分割的研究趋势进行了展望
Difficulty:
Result:
category: 传统分割算法综述
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E4%B8%89%E8%A7%92%E7%BD%91%E6%A0%BC%E5%88%86%E5%89%B2%E7%BB%BC%E8%BF%B0_%E8%91%A3%E6%B4%AA%E4%BC%9F.pdf
Number: 43
Name: 基于超体素的LiDAR点云粘连目标分割算法
Publication category: CA
Publication Name: 集美大学学报(自然科学版)
Issuing Time: 2017-01-28
Contribution: 针对点云粘连现象,结合三维点云的空间分布和颜色信息,引入过分割方法将
点云集划分为超体素,利用归一化方法完成粘连区域的目标分割
Difficulty: 针对点云地物分割结果中存在的粘连现象
Result: 该方法对树木之间、树木与建筑物之间的粘连具有良好的分类效果
category: 传统分割_混合分割方法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E5%9F%BA%E4%BA%8E%E8%B6%85%E4%BD%93%E7%B4%A0%E7%9A%84LiDAR%E7%82%B9%E4%BA%91%E7%B2%98%E8%BF%9E%E7%9B%AE%E6%A0%87%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95_%E8%B5%B5%E6%88%90%E4%BC%9F.pdf
Number: 42
Name: 基于改进 RANSAC 算法的屋顶激光点云面片分割方法
Publication category: 北大中文核心
Publication Name: 测绘通报
Issuing Time: 2012-11-25
Contribution: 将种子点的选取和点到距离的标准差引入RANSAC算法中,对随机抽样一致性算
法进行了改善
Difficulty: 3D 霍夫变换分割方法是将传统的二维霍夫变换拓展到三维空间,将平面转换到参数空间,根
据点云生成所有可能的平面,统计平面中点的个数来确定平面,此方法计算量大、速度慢,且容易产生伪平面
Result: 试验证明该方法能有效地对建筑物屋顶面片进行点云分割
category: 传统分割_混合分割方法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BRANSAC%E7%AE%97%E6%B3%95%E7%9A%84%E5%B1%8B%E9%A1%B6%E6%BF%80%E5%85%89%E7%82%B9%E4%BA%91%E9%9D%A2%E7%89%87%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95_%E8%83%A1%E4%BC%9F.pdf
Number: 41
Name: 利用RANSAC算法对建筑物立面进行点云分割
Publication category: 北大中文核心
Publication Name: 测绘科学
Issuing Time: 2010-12-30
Contribution: 将点云的r半径密度引入RANSAC点云分割算法中,结合角度和距离对分割算法进行改进
Difficulty: RANSAC 方法对建筑物立面点云进行分割不够理想
Result:
category: 传统分割_混合分割方法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E5%88%A9%E7%94%A8RANSAC%E7%AE%97%E6%B3%95%E5%AF%B9%E5%BB%BA%E7%AD%91%E7%89%A9%E7%AB%8B%E9%9D%A2%E8%BF%9B%E8%A1%8C%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2_%E6%9D%8E%E5%A8%9C.pdf
Number: 40
Name: 点云模型的谱聚类分割
Publication category: EI
Publication Name: 计算机辅助设计与图形学学报
Issuing Time: 2012-12-15
Contribution: 为了实现点云模型的有意义分割,提出一种基于谱聚类的分割算法
Difficulty: 该算法基于归一化的非对称Laplacian矩阵,避免了构造谱空间时多次归一化造成的误差;
通过移除掉多余的特征向量,在一个更低维的聚类空间中进行模型分割;基于视觉理论的最
小值原则,使用归一化的几何矩定义相似矩阵,使分割结果对模型的平移、旋转和缩放变换无关
Result: 通过实验验证了本文算法的正确性和有效性
category: 传统分割_基于聚类的分割方法_谱聚类
同类型还有MeanShift聚类以及模糊聚类
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E7%82%B9%E4%BA%91%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%B0%B1%E8%81%9A%E7%B1%BB%E5%88%86%E5%89%B2_%E9%A9%AC%E8%85%BE.pdf
Number: 39
Name: 采用局部凸性和八叉树的点云分割算法
Publication category: EI
Publication Name: 西安交通大学学报
Issuing Time: 2012-10-10
Contribution: 针对粗糙点云分割效果差的问题,提出了一种采用八叉树和局部凸性的点云分割算法,属于区域分割算法中的层次分解法(这一分类还有KD树)
Difficulty: 可以有效地减少曲面数量,而且在曲面质量上也优于同类算法
Result: 在处理分布较均匀的闭合点云数据时,能够有效减少最终的曲面个数,且面片的质量与手工分割拟合度达到90%以上
category: 传统分割_基于区域分割算法_层次分解法_八叉树
同类型还有KD树
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E9%87%87%E7%94%A8%E5%B1%80%E9%83%A8%E5%87%B8%E6%80%A7%E5%92%8C%E5%85%AB%E5%8F%89%E6%A0%91%E7%9A%84%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95_%E5%82%85%E6%AC%A2.pdf
Number: 38
Name: 散乱噪声点云的数据分割
Publication category: EI
Publication Name: 机械工程学报
Issuing Time: 2007-02-15
Contribution: 提出基于边界曲线微分几何特征的新方法分割散乱噪声点云,属于区域分割算法中的区域增长算法
Difficulty:
Result: 能够克服噪声影响, 有效提取散乱噪声点云的G1 G2边界。 对复杂曲面模型, 该方法也能够直接获得较好的G2连续边界
category: 传统分割_基于区域分割算法_区域增长算法
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E6%95%A3%E4%B9%B1%E5%99%AA%E5%A3%B0%E7%82%B9%E4%BA%91%E7%9A%84%E6%95%B0%E6%8D%AE%E5%88%86%E5%89%B2_%E5%90%B4%E4%B8%96%E9%9B%84.pdf
Number: 37
Name: 基于3D活动轮廓模型的缺陷点云分割方法
Publication category: EI
Publication Name: 华中科技大学学报(自然科学版)
Issuing Time: 2011_02_25
Contribution: 提出一种基于3D活动轮廓模型的缺陷点云自动分割方法 ,属于基于边缘的分割算法
Difficulty: 由于噪声影响,点云模型的边缘定位精度差,使得基于边缘的分割算法存在不足
Result: 能够有效处理点云缺陷并实现大规模散乱点云的快速分割
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E5%9F%BA%E4%BA%8E3D%E6%B4%BB%E5%8A%A8%E8%BD%AE%E5%BB%93%E6%A8%A1%E5%9E%8B%E7%9A%84%E7%BC%BA%E9%99%B7%E7%82%B9%E4%BA%91%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95_%E8%8E%AB%E5%A0%83.pdf
Number: 36
Name: 点云模型分割及应用技术综述
Publication category: 北大中文核心
Publication Name: 计算机科学
Issuing Time: 2012_04_15
Contribution: 介绍了点云分割的定义、分类和应用情况,分析比较了几类典型的点云分割算法,
给出了各方法的理论、特点和应用范围
Difficulty: 点云模型的局部有意义特征物分割与识别工作的进一步研究,与人工智能学科的结合,是将来的一个发展方向;
如何能在更大程度上对点云模型进行自动剖切、自动分割,仍然是基于点的计算机图形学中的一个热点问题
Result:
category: 传统分割算法综述
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E4%B8%89%E7%BB%B4%E7%BD%91%E6%A0%BC%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%88%86%E5%89%B2%E5%8F%8A%E5%BA%94%E7%94%A8%E6%8A%80%E6%9C%AF%E7%BB%BC%E8%BF%B0_%E5%AD%99%E6%99%93%E9%B9%8F.pdf
Number: 35
Name: 基于RGB-D三维点云目标分割
Publication category:
Publication Name: 计算机技术与发展
Issuing Time: 2018_07_04
Contribution: 提出一种基于RGB-D的背景点云目标分割方法
Difficulty: 针对点云模型分割出现的过分割和欠分割等分割不精确问题
Result: 实验结果表明,背景分割可以有效分割深度值小于背景的前景,结合图像分割有效地避免了过分割和欠分割问题
category: 传统分割算法综述
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_16/%E5%9F%BA%E4%BA%8ERGB_D%E4%B8%89%E7%BB%B4%E7%82%B9%E4%BA%91%E7%9B%AE%E6%A0%87%E5%88%86%E5%89%B2_%E9%99%88%E5%9B%BD%E5%86%9B.pdf
Number: 34
Name: 一种用于激光雷达识别车道标线算法
Publication category: 北大中文核心
Publication Name: 科学技术与工程
Issuing Time: 2017_06_08
Contribution: 提出了一种用于激光雷达数据帧的车道标线识别算法
Difficulty: 避免了摄像机自身很难克服的缺陷,如形变和极易受外界环境影响,而且克服了基于被动视觉车道标线识别
算法受环境( 强光照、弱光照等) 影响、视角较小、受车辆位置影响以及鲁棒性差( 只能识别单一路况) 的缺陷
Result: 有效抑制了道路周围环境对车道标线识别的干扰,验证了算法的有效性
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_15/%E4%B8%80%E7%A7%8D%E7%94%A8%E4%BA%8E%E6%BF%80%E5%85%89%E9%9B%B7%E8%BE%BE%E8%AF%86%E5%88%AB%E8%BD%A6%E9%81%93%E6%A0%87%E7%BA%BF%E7%AE%97%E6%B3%95_%E5%AD%94%E6%A0%8B.pdf
Number: 33
Name: 智能车辆3-D点云快速分割方法
Publication category: EI
Publication Name: 清华大学学报(自然科学版)
Issuing Time: 2014_11_15
Contribution: 针对于智能车辆环境感知实时性要求,研究一种基于3-D全景式激光雷达的点云快速分割方法
Difficulty: 该方法同栅格法相比能够较好地降低过分割与欠分割错误率
Result: 其中车辆分割准确率约为95%,行人分割准确率约为85%,且耗时不受场景复杂度影
响,能够较稳定控制在55ms帧左右
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_15/%E6%99%BA%E8%83%BD%E8%BD%A6%E8%BE%863_D%E7%82%B9%E4%BA%91%E5%BF%AB%E9%80%9F%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95_%E7%8E%8B%E8%82%96.pdf
Number: 32
Name: 车载激光点云典型地物提取技术研究
Publication category:
Publication Name: 道路勘测(工学版)
Issuing Time: 2017_08_15
Contribution: 为了提高车载移动激光扫描点云数据处理的自动化程度,提出一种适用于车载点云数据的地物提取方法
Difficulty: 目前,车载点云数据处理的自动化程度偏低,人工内业作业量较大
Result: 该方法可有效( 从车载点云数据中) 提取地面、建筑、树木、路灯等不同类型的地物
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_15/%E8%BD%A6%E8%BD%BD%E6%BF%80%E5%85%89%E7%82%B9%E4%BA%91%E5%85%B8%E5%9E%8B%E5%9C%B0%E7%89%A9%E6%8F%90%E5%8F%96%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6_%E8%B5%B5%E8%83%9C%E5%BC%BA%20(1).pdf
Number: 31
Name: 基于3D激光雷达城市道路边界鲁棒检测算法
Publication category: EI
Publication Name: 浙江大学学报(工学版)
Issuing Time: 2017_12_12
Contribution: 对点云预处理,并采用点云映射的方式快速分割出地面,同时消除路内障碍物以降低数据量
Difficulty: 该算法适用在道路边界不规则、存在路内障碍物遮挡边界的情况下
Result: 采用该方法得到的道路边界检测结果依然具有较高的鲁棒性和准确性
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_15/%E5%9F%BA%E4%BA%8E3D%E6%BF%80%E5%85%89%E9%9B%B7%E8%BE%BE%E5%9F%8E%E5%B8%82%E9%81%93%E8%B7%AF%E8%BE%B9%E7%95%8C%E9%B2%81%E6%A3%92%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95_%E5%AD%99%E6%9C%8B%E6%9C%8B.pdf
Number: 30
Name: 考虑局部点云密度的建筑立面自适应分割方法
Publication category: 北大中文核心
Publication Name: 激光与光电子进展
Issuing Time: 2015_06_10
Contribution: 提出考虑局部点云密度的建筑立面自适应分割方法,针对局部点云密度变化的点云数据分割方法
Difficulty: 其他方法直接对三维激光扫描数据进行平面分割,并没有考虑局部点云密度不断变化的特性
Result: 实验验证了考虑局部点云密度的方法能够较好的对建筑立面进行分割
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_15/%E8%80%83%E8%99%91%E5%B1%80%E9%83%A8%E7%82%B9%E4%BA%91%E5%AF%86%E5%BA%A6%E7%9A%84%E5%BB%BA%E7%AD%91%E7%AB%8B%E9%9D%A2%E8%87%AA%E9%80%82%E5%BA%94%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95_%E7%8E%8B%E6%9E%9C.pdf
Number: 29
Name: Point Cloud Labeling using 3D Convolutional Neural Network
Publication category:
Publication Name: ICPR
Issuing Time: 2016_12
Contribution: 介绍了一种基于三维卷积神经网络的3D点云标签方案,3D-CNN
在3D网络的体素化,训练和测试期间,提出了有效处理大数据的解决方案
Difficulty: 方法不需要先验知识,例如地面和/或建筑物的分割,预先计算的法线等等。一切都是基于
体素化数据,这是一种直接的表示。从另一种观点认为,我们的方法是一种端到端分割方法
Result: 汽车和飞机准确率高于95%,而建筑物,电线杆和电线的精度在80%到90%之间,树木的准确度略低于80%
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_14/Point%20Cloud%20Labeling%20using%203D%20Convolutional.pdf
Number: 28
Name: 面向对象的倾斜摄影测量点云分类方法
Publication category: 北大中文核心
Publication Name: 国土资源遥感
Issuing Time: 2018_06
Contribution: 提出了一种面向对象的倾斜摄影测量点云分类方法
首先!计算单点特征向量,然后!利用SLIC(算法将点云对应的影像分割成超像素!再根据点云和影像间的关系!将点云聚类成超体素对象!并计算每个对象的特征向量) 在此基础上!采用随机森林算法对超体素进行分类) 最后!根据语义信息对分类结果进行后处理获得最终的点云分类结果
Difficulty: 需要挖掘更多更有效的特征来提高分类精度
Result: 总体分类精度分别达到91.2%和88.1%,比基于单点的分类方法分别提高了2.3%和8.2%
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_14/%E9%9D%A2%E5%90%91%E5%AF%B9%E8%B1%A1%E7%9A%84%E5%80%BE%E6%96%9C%E6%91%84%E5%BD%B1%E6%B5%8B%E9%87%8F%E7%82%B9%E4%BA%91%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95.pdf
Number: 27
Name: A shape-based segmentation method for mobile laser scanning point clouds
Publication category: ScienceDirect
Publication Name: ISPRS
Issuing Time: 2015_09
Contribution: 提出基于形状的分割方法,所提出的方法首先计算每个点的最佳邻域尺寸以导出与其相关联的几何特征,然后使用支持向量机(SVM)根据几何特征对点云进行分类。其次,定义了一组规则来对分类点云进行分割,并提出了分段的相似性标准来克服过分割。最后,分段输出基于拓扑连接合并为有意义的几何抽象
Difficulty: 城市场景的点云包含大量具有显着尺寸可变性,复杂和不完整结构以及孔洞或可变点密度的物体,这对移动激光点云的分割提出了巨大挑战
Result:
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_14/A%20shape-based%20segmentation%20method%20for%20mobile%20laser%20scanning%20point%20clouds.pdf
Number: 26
Name: 车载激光扫描数据中多类目标的层次化提取方法
Publication category: EI
Publication Name: 测绘学报
Issuing Time: 2015_09
Contribution: 发展了基于超级体素的点云分割方法
融合点云的几何、纹理和反射强度等多种特征进行分割和分类,提高了复杂场景中点云分割和目标提取的质量
Difficulty: 点云分割的结果依赖于超级体素分类的结果,当体素分类出错时,会导致错误的分割结果
Result: 提取出建筑物、地面、路灯、树木、电线杆、交通标志牌、汽车、围墙等多类目标,目标提取的总体精度为92.3%
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_14/%E8%BD%A6%E8%BD%BD%E6%BF%80%E5%85%89%E6%89%AB%E6%8F%8F%E6%95%B0%E6%8D%AE%E4%B8%AD%E5%A4%9A%E7%B1%BB%E7%9B%AE%E6%A0%87%E7%9A%84%E5%B1%82%E6%AC%A1%E5%8C%96%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95_%E8%91%A3%E9%9C%87.pdf
Number: 25
Name: 基于DBN的车载激光点云路侧多目标提取
Publication category: EI
Publication Name: 测绘学报
Issuing Time: 2018_12
Contribution: 总结了传统的点云分割方法和深度学习分割方法
介绍了DBN网络
Difficulty: 仅考虑其整体形态轮廓特征,而没有兼顾目标对象自身点
云数据属性特征的差异
Result: 采用准确率,精度,召回率进行评价
行道树提取结果的准确率达97.31%,召回率达98.30%,精度达95.70%%
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_14/%E5%9F%BA%E4%BA%8EDBN%E7%9A%84%E8%BD%A6%E8%BD%BD%E6%BF%80%E5%85%89%E7%82%B9%E4%BA%91%E8%B7%AF%E4%BE%A7%E5%A4%9A%E7%9B%AE%E6%A0%87%E6%8F%90%E5%8F%96.pdf
Number: 24
Name: 车载LiDAR点云路灯提取方法
Publication category: EI
Publication Name: 测绘学报
Issuing Time: 2018_12
Contribution: 将传统点云提取方法分为:1 基于空间聚类的方法 2 基于几何特征的方法
3 基于超体元的方法 4 基于模板匹配的方法 四大类
Difficulty:
Result:
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_14/%E8%BD%A6%E8%BD%BDLiDAR%E7%82%B9%E4%BA%91%E8%B7%AF%E7%81%AF%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95.pdf
Number: 23
Name: 三维激光扫描点云数据处理研究进展、挑战与趋势
Publication category: EI
Publication Name: 测绘学报
Issuing Time: 2017_10
Contribution: 总结了三维激光扫描系统的现状
三维点云数据处理的关键进展
以及在测绘地理信息等领域的典型应用
并分析了三维点云数据处理面临的挑战,最后展望了三维激光扫描与点云处理的发展趋势
Difficulty:
Result: 传统分割方法:特征描述能力不足,分类和目标提取质量无法满足应用需求
深度学习方法:在三维点云场景的精细分类方面,还面临许多难题:海量三维数据集样本库的建立,适用于三维结构特征学习的神经网
络模型的构建及其在大场景三维数据解译中的应用
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_14/%E4%B8%89%E7%BB%B4%E6%BF%80%E5%85%89%E6%89%AB%E6%8F%8F%E7%82%B9%E4%BA%91%E6%95%B0%E6%8D%AE%E5%A4%84%E7%90%86%E7%A0%94%E7%A9%B6%E8%BF%9B%E5%B1%95%E3%80%81%E6%8C%91%E6%88%98%E4%B8%8E%E8%B6%8B%E5%8A%BF.pdf
Number: 22
Name: VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
Publication category: IEEE
Publication Name: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018
Issuing Time: 2018
Contribution: 提出了一种新的端到端的用于3D点云检测的深度学习框架:VoxelNet
提出了一种实施VoxelNet的有效方法这有利于稀疏点结构和体素网格上的高效并行处理
Difficulty: 扩展3D功能学习网络达到数量级更多的点和3D检测任务
Result: 在KITTI数据集上car,准确率81.97,Pedestrian上,准确率为65.95,Cyclist上,准确率为61.17
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_14/VoxelNet%20End-to-End%20Learning%20for%20Point%20Cloud%20Based%203D%20Object%20Detection.pdf
Number: 21
Name: Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs
Publication category: IEEE
Publication Name: CVPR
Issuing Time: 2017_07_21
Contribution: formulate a convolution-like operation on graph signals performed in the spatial domain where filter
weights are conditioned on edge labels (discrete or continuous) and dynamically generated for each specific input sample
第一个在点云分类上应用图形卷积
Difficulty: a generalization of CNNs from grids to general graphs is not straightforward
Result: 在ModelNet10数据集上Mean class accuracy为89.3
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/Dynamic%20Edge-Conditioned%20Filters%20in%20Convolutional%20Neural%20Networks%20on%20Graphs.pdf
Number: 20
Name: PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation
Publication category: arxiv
Publication Name:
Issuing Time: 2018_07_02
Contribution: 提出了一个PointSIFT框架编码不同方向的信息,从而有效的描述点云的形状
Difficulty: 有效的点云形状描述
Result: 在ScanNet数据集上准确率为86.2,mIoU为41.5
在S3DIS数据集上,准确率为88.72,mIoU为70.23
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/PointSIFT%20A%20SIFT-like%20Network%20Module%20for%203D%20Point%20Cloud%20Semantic.pdf
Number: 19
Name: Fast Semantic Segmentation of 3D Point Clouds using a Dense CRF with Learned Parameters
Publication category: IEEE
Publication Name: ICRA
Issuing Time: 2015_05_26
Contribution: 引入了一种3D点云的快速语言分割框架,基于随机森林分类器
Difficulty:
Result: 在NYU Depth datasets上处理数据速度是同类的两倍
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/fast%20semantic%20segmentation%20of%203D%20point%20cloud%20with%20strongly%20varying%20density.pdf
Number: 18
Name: 3D All The Way:Semantic Segmentation of Urban Scenes From Start to End in 3D
Publication category: IEEE
Publication Name: ICRA 2015
Issuing Time: 2015
Contribution: 为3D城市模型提出了一种新的语义分割方法,从使用简单的3D功能,基于点的使用随机森林进行分类,并使用3D条件随机场平滑
速度快,能在几分钟内分析整条街道,3D标签可以与最先进的2D分类器的结果相结合,进一步提升业绩 ,完全以3D形式进行端到端的立面建模
Difficulty: 市面上其他方法昂贵,此外,采集的3D数据不完整,包含了噪音,洞和杂乱
Result: 在RueMonge2014数据集低精度数据上的IOU为52.09,时间为15min
高精度数据上的IOU为56.39,时间为76min
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/3D%20All%20The%20Way%20semantic%20segmentation%20of%20urban%20scenes%20from%20start%20to%20end%20in%203D.pdf
Number: 17
Name: fast semantic segmentation of 3D point cloud with strongly varying density
Publication category: ISPRS
Publication Name: Remote Sensing and Spatial Information Sciences
Issuing Time: 2016_04_01
Contribution: 描述了一种有效且高效的3D点云逐点语义分类方法。该方法可以处理非结构化和非均匀点云
它具有计算效率,可以在几分钟内处理具有数百万个点的点云
Difficulty: The core of our method is an efficient strategy to construct approximate multi-scale neighborhoods in
3D point data
Result: For Paris-Rue-Cassette and Paris-Rue-Madame the proposedmethod reaches
overall classification accuracies of 95-98% at a mean class recall 93-99%
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/Fast%20Semantic%20Segmentation%20of%203D%20Point%20Clouds%20using%20a%20Dense%20CRF.pdf
Number: 16
Name: 基于多尺度特征和 PointNet 的 LiDAR 点云地物分类方法
Publication category: 北大中文核心
Publication Name: 激光与光电子学进展
Issuing Time: 2018_10_07
Contribution: 针对 LiDAR 点云数据中复杂场景下地物分类问题,本文提出了一种基于多尺度特征和 PointNet 的
深度神经网络模型,对 PointNet 提取局部特征能力进行改进,实现 LiDAR 点云中复杂场景下的自动分类
Difficulty: 对PointNet提取局部特征能力进行了改进
Result: 在Semantic3 Ddataset数据集上mIOU为67.4,snapnet为59.1
在Vaihingen在城市数据集上mIOU为34.9,PointNe为32.0
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/%E5%9F%BA%E4%BA%8E%E5%A4%9A%E5%B0%BA%E5%BA%A6%E7%89%B9%E5%BE%81%E5%92%8CPointNet%E7%9A%84LiDAR%E7%82%B9%E4%BA%91%E5%9C%B0%E7%89%A9%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95_%E8%B5%B5%E4%B8%AD%E9%98%B3.pdf
Number: 15
Name: PU-Net: Point Cloud Upsampling Network
Publication category: IEEE
Publication Name: CVPR 2018
Issuing Time: 2018_01_21
Contribution: 提出了一个数据驱动下的点云上采样技术
Difficulty: 数据的稀疏性和不规则性
Result:
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/PU-Net%20Point%20Cloud%20Upsampling%20Network.pdf
Number: 14
Name: GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud
Publication category: arXiv
Publication Name:
Issuing Time: 2018_12_08
Contribution: propose a Generative Shape Proposal Network to tackle 3D object proposal
following an analysis-bysynthesis strategy
基于区域的PointNe提出灵活的3D实例细分框架
Difficulty: 在传感器噪声较大和数据不完整的情况下,在杂乱的场景中具有各种比例的对象类别范围, 需要建立
对广义的语义和客体的理解
Result: 在ScanNet数据集上mean为30.6
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/GSPN%20%20Generative%20Shape%20Proposal%20Network%20for%203D%20Instance%20Segmentation%20in.pdf
Number: 13
Name: Dynamic Graph CNN for Learning on Point Clouds
Publication category: arXiv
Publication Name:
Issuing Time: 2018_01_24
Contribution: 我们提出了一种新的点云操作,EdgeConv,
能更好地捕捉局部几何特征
Difficulty: 几何特征对3D识别任务的重要性
Result: 在ShapeNet part dataset mIOU为85.1
在S3DIS数据集上,mIOU为56.1
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/Dynamic%20Graph%20CNN%20for%20Learning%20on%20Point%20Clouds.pdf
Number: 12
Name: Spherical Convolutional Neural Network for 3D Point Clouds
Publication category: arXiv
Publication Name:
Issuing Time: 2018_05
Contribution: 提出了一种利用球形的三维点云处理神经网络卷积核和空间的八叉树分割
Difficulty: 处理不规则点云上具有优势,直接实施在点云上,而不是算子
Result: 在ModelNet10数据集上,为93.2
在ModelNet40数据集上,为85.2
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_12/Spherical%20Convolutional%20Neural%20Network.pdf
Number: 11
Name: SEGCloud: Semantic Segmentation of 3D Point Clouds
Publication category: arxiv
Publication Name: Proceedings of the International Conference on 3D Vision
Issuing Time: 2017_10_20
Contribution: 提出了SegCloud,获得3D点级的端到端框架
Difficulty:
Result: 在Semantic3D数据集上的mIOU为0.6310,mAcc为0.7308
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/SEGCloud%20Semantic%20Segmentation%20of%203D%20Point%20Clouds.pdf
Number: 10
Name: 三维点云数据分割研究现状
Publication category:
Publication Name: 宜宾学院学报
Issuing Time: 2016_11_10
Contribution: 介绍三维点云数据分割的基本原理和特征,以及经典的点云数据集和测试平台,总结、对比现阶段各类点云分割算法的基本原理、特点和适用场景
Difficulty: 现有算法的自适应能力差,大部分算法对异常点和噪声敏感,且效率也有待提升
Result: 未来研究需充分利用点云数据的语境信息,进一步结合深度学习理论,从而提升点云分割效果
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/%E4%B8%89%E7%BB%B4%E7%82%B9%E4%BA%91%E6%95%B0%E6%8D%AE%E5%88%86%E5%89%B2%E7%A0%94%E7%A9%B6%E7%8E%B0%E7%8A%B6_%E7%A7%A6%E5%BD%A9%E6%9D%B0.pdf
Number: 09
Name: 三维点云场景数据获取及其场景理解关键技术综述
Publication category: 北大中文核心
Publication Name: 激光与光电子学进展
Issuing Time: 2018_09_14
Contribution: 总结了不同方式的点云获取方法,对不同的点云数据及相关数据库进行了对比分析
点云语义分割技术进行了对比分析与总结
Difficulty: 三维场景理解关键技术存在的问题,尤其是针对具有颜色信息的激光点云的场景理解
Result:
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/%E4%B8%89%E7%BB%B4%E7%82%B9%E4%BA%91%E5%9C%BA%E6%99%AF%E6%95%B0%E6%8D%AE%E8%8E%B7%E5%8F%96%E5%8F%8A%E5%85%B6%E5%9C%BA%E6%99%AF%E7%90%86%E8%A7%A3%E5%85%B3%E9%94%AE%E6%8A%80%E6%9C%AF%E7%BB%BC%E8%BF%B0_%E6%9D%8E%E5%8B%87.pdf
Number: 08
Name: Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
Publication category: IEEE
Publication Name: CVPR 2018
Issuing Time: 2017_11_27
Contribution: 提出了一个深度学习框架来解决大规模点云的语义分割任务:SPGraph
目前在Semantic3D数据集的Benchmark中排名第一
介绍了超点图
Difficulty: 数据的规模and缺乏类似于图像中的规则网格排列的清晰结构
Result: 在Semantic3D数据集中,mIOU为0.762 ,OA为0.929
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/Large-scale%20Point%20Cloud%20Semantic%20Segmentation%20with%20Superpoint%20Graphs.pdf
Number: 07
Name: Multi-view Convolutional Neural Networks for 3D Shape Recognition
Publication category: IEEE
Publication Name: ICCV 2015
Issuing Time: 2015
Contribution: 将3D点云投影到2D图像后作为卷积神经网络输入,创造了MVCNN(同类型snapnet)
Difficulty: 这类方法会容易造成三维结构信息的丢失,而且投影角度的选取,同一角度的投影
对物体的表征能力也不同,对网络的泛化能力有一定的影响
Result: 在Princeton ModelNet dataset 取得89.9% classification accuracy, and 70.1% mAP on retrieval
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/Multi-view%20Convolutional%20Neural%20Networks%20for%203D%20Shape%20Recognition.pdf
Number: 06
Name: Deep Projective 3D Semantic Segmentation
Publication category:
Publication Name: CAIP2017
Issuing Time: 2017_8_22
category: 三维转二维,利用二维神经网络进行训练
Contribution: 将点云组合到2D图像上,然后将这些图像用作到2D-CNN,提出DeePr3SS 调查了不同输入模态的影响,例如颜色,深度和表面法线
Difficulty: 这类方法会容易造成三维结构信息的丢失,而且投影角度的选取,同一角度的投影
对物体的表征能力也不同,对网络的泛化能力有一定的影响
Result: 在Semantic3D数据集中,mIOU为0.585,OA为0.889
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/Deep%20Projective%203D%20Semantic%20Segmentation.pdf
code: https://github.com/vlfeat/matconvnet (matlab代码)
Data: Semantic3D:http://www.semantic3d.net/view_dbase.php?chl=1
Number: 05
Name: VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition
Publication category: IEEE
Publication Name: IROS 2015
Issuing Time: 2015
Contribution: 卷积计算量非常大,网络中仅利用了点云的结构信息,没有考虑到点云的颜色
,强度等信息
Difficulty: 这类方法会容易造成三维结构信息的丢失,而且投影角度的选取,同一角度的投影
对物体的表征能力也不同,对网络的泛化能力有一定的影响
Result:
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/VoxNet%20A%203D%20Convolutional%20Neural%20Network%20for%20Real-Time%20Object.pdf
Number: 04
Name: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Publication category: IEEE
Publication Name: CVPR 2017
Issuing Time: 2017_07
Contribution: 提出了PointNet框架
Difficulty: 对大规模点云还具有一定的局限性,不会捕获度量空间点引起的局部结构,限制了它识别细粒度模式的能力
无法处理局部特征
Result: 在stanford 3D semantic parsing dataset上 mIoU为0.4771,OA为0.7862
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/PointNet%20Deep%20Learning%20on%20Point%20Sets%20for%203D%20Classification%20and%20Segmentation.pdf
code: https://github.com/charlesq34/pointnet
Data: ModelNet40: http://modelnet.cs.princeton.edu/
Number: 03
Name: PointNet++: Deep Hierarchical Feature Learning onPoint Sets in a Metric Space
Publication category:
Publication Name: AIPS 2017
Issuing Time: 2017
Contribution: 针对PointNet局部特征信息进行了改进,推向多尺度,综合局部特征
提出了PointNet++
实现了鲁棒性和细节捕捉
Difficulty: 如何生成点集的分区,以及如何通过本地特征学习器抽象点集或局部特征
点采样和分组策略没有揭示出入点云的空间分布
Result: Scannet labeling accuracy 是0.833
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/PointNet%2B%2B%20Deep%20Hierarchical%20Feature%20Learning%20on.pdf
code: https://github.com/charlesq34/pointnet2
Data: ModelNet40: http://modelnet.cs.princeton.edu/
MNIST :http://yann.lecun.com/exdb/mnist/
SHREC15 :https://www.cs.cf.ac.uk/shaperetrieval/shrec15/index.html
ScanNet :https://github.com/ScanNet/ScanNet
Number: 02
Name: PointCNN: Convolution On X -Transformed Points
Publication category:
Publication Name: AIPS 2018
Issuing Time: 2018
Contribution: 提出了PointCNN
通过对点云特性的分析,提出了一种基于点云中点学习到的X变化方法,对点云卷积处理
的性能有所提高
Difficulty: X-transformations还有较大的改进空间,尤其是在排序方面
Result: 在ShapeNet Parts数据集上,pIoU为0.8614,mpIoU为0.846
在S3DIS数据集上mIoU数据集为0.6539
在ScanNet数据集上的OA为0.851
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/PointCNN%20Convolution%20On%20X%20-Transformed%20Points.pdf
Number: 01
Name: SO-Net: Self-Organizing Network for Point Cloud Analysis
Publication category: IEEE
Publication Name: CVPR 2018
Issuing Time: 2018_03_12
Contribution: 提出了SO-net
提出了点云自编码器作为预训练在各种任务中提高网络性能
低计算成本
Difficulty: 网络可能无法正确注释细粒度的细节
Result: 在ShapeNetPart dataset数据集中,IoU为0.846,预训练IoU为0.849
Link: https://github.com/ZGX010/Large-scene-point-cloud-semantic-segmentation/blob/master/Paper_set/2019_01_11/SO-Net%20Self-Organizing%20Network%20for%20Point%20Cloud%20Analysis.pdf
Name: Large-scene-point-cloud-semantic-segmentation by CNN
Publication category: SCI
Publication Name: computer
Issuing Time: 2012_2_3
Contribution: Find a new CNNnet
Difficulty:
Result: on the dataset that Kitti have 0.4mIoU
Link https://github.com/ZGX010/Signage-object-detection/blob/master/articles/Conference%20abstracts_English/%E4%BC%9A%E8%AE%AECVPR_2016_%E9%87%8E%E5%A4%96%E4%BA%A4%E9%80%9A%E6%A0%87%E5%BF%97%E6%A3%80%E6%B5%8B%E4%B8%8E%E5%88%86%E7%B1%BB.pdf
Thumbnail:
Name: Large-scene-point-cloud-semantic-segmentation by CNN
Publication category: SCI
Publication Name: computer
Issuing Time: 2012_2_3
Contribution: Find a new CNNnet
Difficulty:
Result: on the dataset that cityspaces have 0.4mIoU