Skip to content

Iterative stochastic gradient descent (SGD) linear regressor with regularization

License

Notifications You must be signed in to change notification settings

ZechenM/SGD-Linear-Regressor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SGD-Linear-Regressor

Iterative stochastic gradient descent (SGD) linear regressor with regularization

  • Dataset: Kaggle “Graduate Admission 2” https://www.kaggle.com/mohansacharya/. The dataset contains a number of parameters:
    1. GRE Scores (out of 340)
    2. TOEFL Scores (out of 120)
    3. University Rating (out of 5)
    4. Statement of Purpose (out of 5)
    5. Letter of Recommendation Strength (out of 5)
    6. Undergraduate GPA (out of 10)
    7. Research Experience (either 0 or 1)
    8. Chance of Admit (ranging from 0 to 1)
  • SGD solver supports 2D grid search with one dimension being the learning rate α and the other dimension being the regularization weight λ.
  • The loss (error) in regression is defined as the mean squared error (MSE) between the ground truth values and the regression values.

About

Iterative stochastic gradient descent (SGD) linear regressor with regularization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages