Skip to content

Zefeng-Wu/Bioinformatics_softwares

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

串联重复元件

HipSTR: Genome-wide profiling of heritable and de novo STR variations, 2017, Nature Methods. (https://hipstr-tool.github.io/HipSTR)

citings: The impact of short tandem repeat variation on gene expression, 2019, Nature genetics

转录组进化

treeExp:http://hupi.fudan.edu.cn/people/guxun

基因融合

1. star-fusion (在速度和准确率上均比较高,基于star比对结果)

1. 构建reference lib. 人类和鼠的可以从以下网址直接下载:https://data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/; 其中plug-n是已经建立好的reference lib, 而source里面包含了所需的原始文件。从原始文件构建reference lib的命令如下;默认会在当前目录生成一个名为 ctat_genome_lib_build_dir的目录

FusionFilter/prep_genome_lib.pl \                   #集成于Star-Fucsion里的perl脚本
--genome_fa ref_genome.fa \                         # 参考基因组         
--gtf ref_annot.gtf \                               # 基因注释文件
--fusion_annot_lib CTAT_HumanFusionLib.dat.gz \     # fusion 注释数据库(不是必须)
--annot_filter_rule AnnotFilterRule.pm \
--pfam_db PFAM.domtblout.dat.gz

2. 运行STAR-fusion. STAR-fusion支持两种模式,第一种是直接从fastq开始,第二种是自己手动进行STAR比对,然后在运行STAR-fusion。

第一种模式的用法如下:

双端
STAR-Fusion \
--genome_lib_dir CTAT_resource_lib \
--left_fq reads_1.fq \
--right_fq reads_2.fq \
--output_dir star_fusion_outdir
单端
STAR-Fusion \
--genome_lib_dir CTAT_resource_lib \
--left_fq reads_1.fq \
--output_dir star_fusion_outdir

第二种模式

1. Star比对

STAR --genomeDir ${star_index_dir} \   
  --readFilesIn ${left_fq_filename} ${right_fq_filename} \ 
  --twopassMode Basic \      
  --outReadsUnmapped None \                                                                                                  
  --chimSegmentMin 12 \                                                                                                    
  --chimJunctionOverhangMin 12 \                                                                                           
  --alignSJDBoverhangMin 10 \                                                                                              
  --alignMatesGapMax 100000 \ 
  --alignIntronMax 100000 \   
  --chimSegmentReadGapMax 3 \                                                                                    
  --alignSJstitchMismatchNmax 5 -1 5 5 \
  --runThreadN ${THREAD_COUNT} \ 
  --outSAMstrandField intronMotif \
  --chimOutJunctionFormat 1

2. Star-funsion

STAR-Fusion \
  --genome_lib_dir CTAT_resource_lib \
  -J Chimeric.out.junction \
  --output_dir star_fusion_outdir

BAM 文件统计和可视化

1. Deeptools (三大功能:1. BAM & Bigwig格式文件处理;2. QC检测 3. 热图和metaplot)
# 处理器数目设定
 -p max/2
 
# 针对指定区域进行处理
 --region chr2:10000-20000

# ignoreDuplicates参数去除重复序列,针对匹配到同一方向同一起点的序列,只保留一个
 -- ignoreDuplicates

# 匹配得分阈值设定
 --minMappingQuality

# warning,deeptools是在scaling data做低质量数据去除和去重,所以如果数据质量较差及重复数据很多,尽量事先使用samtools进行提前处理

功能一:BAM & bigwig file processing
    multiBamSummary
    multiBigwigSummary
    correctGCbias
    bamCoverage
    bamCompare
    bigwigCompare
    computeMatrix
1. multiBamSummary:可以用来处理bam文件在基因组上覆盖情况,默认输出npz文件,衔接plotCorrelation和plotPCA进行作图
bin mode
    multiBamSummary bins --bamfiles file1.bam file2.bam -out results.npz

BED-file mode
multiBamSummary BED-file --BED selection.bed --bamfiles file1.bam file2.bam -out results.npz

deepTools2.0/bin/multiBamSummary bins \
  --bamfiles testFiles/*bam \ # using all BAM files in the folder
  --minMappingQuality 30 \
  --region 19 \ # limiting the binning of the genome to chromosome 19
  --labels H3K27me3 H3K4me1 H3K4me3 HeK9me3 input \
  -out readCounts.npz --outRawCounts readCounts.tab

 head readCounts.tab
 'chr'   'start' 'end'   'H3K27me3'      'H3K4me1'       'H3K4me3'       'HeK9me3'       'input'
 19 10000   20000   0.0     0.0     0.0     0.0     0.0
 19 20000   30000   0.0     0.0     0.0     0.0     0.0
 19 30000   40000   0.0     0.0     0.0     0.0     0.0
 19 40000   50000   0.0     0.0     0.0     0.0     0.0
 19 50000   60000   0.0     0.0     0.0     0.0     0.0
 19 60000   70000   1.0     1.0     0.0     0.0     1.0
 19 70000   80000   0.0     1.0     7.0     0.0     1.0
 19 80000   90000   15.0    0.0     0.0     6.0     4.0
 19 90000   100000  73.0    7.0     4.0     16.0    5.0

2.bamCoverage:可以用来将bam file转换成bigwig file,同时可以设定binSize参数从而的获取不同的分辨率,在比较非一批数据的时候,还可以设定数据normalizeTo1X到某个值(一般是该物种基因组大小)从而方便进行比较。
bamCoverage --bam a.bam -o a.SeqDepthNorm.bw \
--binSize 10
--normalizeUsing RPGC
--effectiveGenomeSize 2150570000
--ignoreForNormalization chrX
--extendReads

3.bamCompare:可以用来的处理treat组和control组的数据转换成bigwig文件,给出一个binsize内结合强度的比值(默认log2处理)。
bamCompare -b1 treatment.bam -b2 control.bam -o log2ratio.bw --normalizeTo1x 2451960000

4.computeMatrix:该功能可以计算每个基因区域的结合得分,生成中间文件用以给plotHeatmap和plotProfiles作图。computeMatrix有两种模式,scale-regions mode和reference-point mode

computeMatrix scale-regions -p 10 \
  -R gene19.bed geneX.bed \
  -S test1.bw test2.bw \
  -b 3000 -a 3000 \
  --regionBodyLength 5000 \   
  --skipZeros \
  -o heatmap.gz 

reference-point mode则是给定一个bed file,以某个点为中心开始统计信号(TSS/TES/center)。但实际上我在尝试的时候regionBdoyLength参数也还是可以用的,所以估计和scale-regions区别也不是太大,主要是作图的一点区别。

computeMatrix reference-point \ # choose the mode
   --referencePoint TSS \ # alternatives: TES, center
   -b 3000 -a 10000 \ # define the region you are interested in
   -R testFiles/genes.bed \
   -S testFiles/log2ratio_H3K4Me3_chr19.bw  \
   --skipZeros \
   -o matrix1_H3K4me3_l2r_TSS.gz \ # to be used with plotHeatmap and plotProfile
   --outFileSortedRegions regions1_H3K4me3_l2r_genes.bed

功能二:Tools for QC. 包括PCA作图,correlation作图等,都是运用multiBamSummary得到npz文件统计样本间的相关系数作图和PCA分析作图,没有需求故此处不做介绍。
    plotCorrelation
    plotPCA
    plotFingerprint
    bamPEFragmentSize
    computeGCBias
    plotCoverage

功能三:Heatmaps and summary plots:主要用来画热图(并包含聚类功能);上游数据是computeMatrix得到的gz file
    plotHeatmap
    plotProfile
    plotEnrichment
    plotHeatmap

1. plotHeatmap
plotHeatmap -m matrix_two_groups.gz \ #输入gz文件
 -out ExampleHeatmap2.png \ 
 --colorMap RdBu \ #指定颜色
 --whatToShow 'heatmap and colorbar' \ #指定输出geatmap和colorbar
 --zMin -3 --zMax 3 \ #指定colorbar的范围
 --kmeans 4 #设定聚类个数

2.plotProfile:主要用来画密度图,上游数据是computeMatrix得到的gz file;注意:默认针对单个bw文件作图或者把多个bw文件画在一个图里面(perGroup参数),同样也可以使用kmean或hclust聚类
  plotProfile -m matrix.mat.gz \
  --perGroup \
  --kmeans 2 \
  -out ExampleProfile3.png

其他参数
    -z 给bed文件一个名称
    --samplesLabel  给bw文件一个名称
    --startLabel
    --endLabel

三代测序数据

1reads过滤
NanoFilt -q 9 -l 1000 > filter.fq (有问题) 
filtlong --min_length 1000 --min_mean_q 9 SRR6924617.fastq >SRR6924617_filt_long_filter.fastq  #(正确)

ATAC

ATACseqQC Guide

eQTL

R MatrixEQTL Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012
Exploring regulation in tissues with eQTL networks
Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics. 2016

等位基因特异性表达

1. phASER

Rare variant phasing and haplotypic expression from RNA sequencing with phASER (Stephane E. Castel, Pejman Mohammadi, Wendy K. Chung, Yufeng Shen & Tuuli Lappalainen; Nature communication,2016)
A vast resource of allelic expression data spanning human tissues (Genome Biology, 2020)

2. WASP

allele-specific software for robust molecular quantitative trait locus discovery    

3. EMASE (python)

Python 环境之anaconda. (尤其适用于在服务器上没有sduo权限的时候安装python包)

1.下载并装miniconda

wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod 777 Miniconda3-latest-Linux-x86_64.sh #给执行权限
bash Miniconda3-latest-Linux-x86_64.sh #运行
rm -rf ~/miniconda #卸载minicoda

2.启动/退出

cd miniconda3
chmod 777 activate 
. ./activate #这里的第一个点跟source是一样的效果
conda list
. ./deactivate #退出环境

3.添加channel

conda config --add channels bioconda
conda config --add channels conda-forge
conda config --get channels

4.安装/卸载软件

conda install gatk
conda install gatk=3.7 #指定版本
conda search gatk #搜索软件
conda remove gatk #卸载软件
conda update 软件名 # 更新软件

5.创建conda环境

conda env list #查当前环境
conda create -n python2 python=2 #-n: 设置新的环境的名字, python=2 指定新环境的python的版本

samtools

samtools view  test.sorted.bam chr1:10000-20000 #提取特定区间的比对信息
samtools view -c SAMPLE.bam ## get the total number of reads of a BAM file (may include unmapped and duplicated multi-aligned reads)
samtools view -c -F 260 SAMPLE.bam #    ### counting only mapped (primary aligned) reads

options
    -c  count reads and print the total number
    -f bitcode  output reads that fulfill the checked 'bitcode' criteria, see SAM bitcode fields
    -F bitcode  exclude reads that match one or more checked 'bitcode' criteria, see SAM bitcode fields
    -F 260  output primary aligned mapped reads
                   read unmapped & not primary alignment criteria 3 & 9 are selected for exclusion
                   bit 3 + bit 9 = 4 + 256 = 260
                   
samtools coverage test.sorted.bam  # 以染色体为单位统计覆盖度、测序深度、碱基数等
samtools bedcov   test.sorted.bam  # 以bed文件为单位统计测序覆盖度(非reads数)
samtools depth    test.sorted.bam  # 统计每个碱基的测序深度

bedtools

bedtools merge -i test.sorted.bam          # 合并overlappedd的reads,形成bed文件   
bedtools coverage -a test.bed -b test.bam  #每个bed区间的reads数和总碱基数 

直系同源基因的鉴定

https://orthovenn2.bioinfotoolkits.net/home
Broccoli: Combining Phylogenetic and Network Analyses for Orthology Assignment

Othofinder

流程:蛋白序列---(DendroBLAST)---> 无根基因树 ---(STAG algorithm)--> 无根物种树  ---STRIDE algorithm---> 有根物种树 ----> 有根基因树 ---(species-overlap&duplication-loss-coalescent---> orthogroup 推断 

fasta_Modi_Uniq.R # modify the fasta header and isoforms
for m in $(ls *.fa); do orthomclAdjustFasta $(basename ${m%.fa}) $m 1 ; done  # add species  in the header
mv *.fasta > ../3adjust_fasta/

conda create -n orthofinder
conda activate orthofinder
conda install -c bioconda orthofinder
nohup orthofinder -f 3adjust_fasta/ -t 40 -M msa & 

本地git新项目

mkdir cv && cd
git init 
git config --global user.name "Zefeng-Wu"
git config --global user.email "[email protected]"

### download or self-make
wget http://labfile.oss.aliyuncs.com/courses/624/cv-template.zip
unzip cv-template
mv cv-template/* .
unzip cv-template

    mv cv-template/* rm -rf cv-template* __MACOSX*(MACOSX前面是两根下划线)

## make a repository via net browser, member the git address
git add .
git commit -m 'commit my cv'
git remote add origin https://github.com/Zefeng-Wu/cv.git
git push -u origin master

Cytoscape

导入网络文件:file->import->network->file(net.txt)
导入节点属性:file->import->table->file(node.txt)(此处为table而非network)

下游分析:Orthofinder构建的有根物种树是根据基因树形成的,最好使用单拷贝基因重新比对,,gblock,triml等修剪,合并alignment形成supermatrix,再用raxml建树

python cafetutorial_prep_r8s.py -i ../peps/3adjust_fasta/Results_Jun28/Orthologues_Jun29/SpeciesTree_rooted.txt -o r8s_ctl_file.txt -s 495300  -p        'Medicago_truncatula,Arabidopsis_thaliana' -c '108'
/mnt/local_disk1/wzf/software/r8s1.81/src/r8s -b -f r8s_ctl_file.txt > r8s_tmp.txt
tail -n 1 r8s_tmp.txt | cut -c 16- > twelve_spp_r8s_ultrametric.txt
ggtree.R

Gene duplication

DupPipe
DupGen_finder

物种树推断

java -jar /lustre/project/og04/shichunwei/biosoft/jmodeltest-2.1.7/jModelTest.jar -d  jmodel.fasta -s 11 -i -g 4 -f -AIC -AICc -DT -BIC -a -tr 8 > jmodel.out
raxmlHPC-PTHREADS-SSE3 -s ../scripts/test.phy -n tree -m PROTGAMMAJTT -T 30 -N 1000 -p 20200716 -f a -x 20170716 # 不要直接使用-PTHREADS-SS,没有多线程

1.0 PATHd8

make PATHd8 & cd PATHd8
wget https://www2.math.su.se/PATHd8/PATHd8.zip
unzip PATHd8.zip
cc PATHd8.c -O3 -lm -o PATHd8

2.0 PAML (mcmctree)

3.0 r8s

Reads 模拟 ()

neat-genreads

ka,ks计算

KaKs_calculator2.0

1.直接用cds比对结果计算kaks

muscle -in GMP.cds.fa -out GMP.cds.msf -msf #muscel cds序列比对
AXTConvertor GMP.cds.msf GMP.cds.axt # 格式转换
KaKs_Calculator -i GMP.cds.axt -o GMP.cds.kaks -m YN # 会报错,序列长短不一样

2.先用蛋白序列比对,然后转为cds比对

muscle -in GMP.pep.fa -out GMP.pep.align.fa
pal2nal.pl  GMP.pep.align.fa GMP.cds.fa -output clustal -nogap > GMP.cds.clw
AXTConvertor GMP.cds.clw GMP.cds.axt
KaKs_Calculator -i GMP.cds.axt -o GMP.cds.kaks  # 不报错

共线性分析 MCscanX

基因组内部

1.准备gff文件,和自身blast结果两个文件(Hip.gff和Hip.blast文件),放到同一目录下

MCScanX Hip #产生三个文件,.collinearity、.tandem以及html文件夹

注:得到的collinearity文件和Dupgene_finder结果一致。

2.准备cds文件,用MCscanX自带的perl脚本计算kaks,依赖clustalW的比对

perl ./add_ka_and_ks_to_collinearity.pl -i Hip.collinearity -d Hippophae_rhamnoides.cds -o Hip.kaks #产生1个文件,即在原来collinearity文件的基础上加上了ka和ks列,注意里面有-2的情况,另外他的结果不是tab分割需要贴到excel里,重新做图

注: add_ka_and_ks_to_collinearity.pl 使用的是perl模块计算kaks,貌似用的是Nei-Gojobori algorithm 算法。而Dupgene_finder使用的方法是GMYN模型。因此二者计算出来的kaks值不一样。

群体基因组学

1. SNP calling

Nextflow pipeline

2. SNP格式转换

PLINK 

3. 多态性计算

VCFtools: diversity (π) and Tajima’s D in regions of interest were estimated using VCFtools. (Comparative genomics sheds light on the convergent evolution of miniaturized wasps )
PopGenome R包计算Tajima's D, Fst, Fu Li's F

选择性清除

SweeD--CLR选择()

4. 群体遗传结构 Admixture Graph Construction

Admixture
1. admixture的输入文件为:PLINK (.bed), ordinary PLINK (.ped), or EIGENSTRAT (.geno);所以需要使用vcftools进行格式转换
    vcftools --vcf my.vcf --plink --out plink # 输出文件:plink.ped与plink.map文件
2.过滤SNP文件: 使用Plink软件。Plink是一个开放的,免费的全基因组关联分析工具。其分析的基础是基因型和表型数据。通过整合gplink 和Haploview 使得结果变得可视化。 gplink 是基于Java的图形用户界面,许多plink 命令可以通过其实现。而且易于与Haploview进行整合。Haploview是一个进行单倍型分析的一个软件。
    plink --noweb --file plink --geno 0.05 --maf 0.05 --hwe 0.0001 --make-bed --out QC # 输出的结果为:QC.bed(binary file,genotype information)、QC.fam(first six columns of plink.bed)、QC.bim(extended MAP file:two extra cols=allele names);得到bed文件后就可以使用admixture进行分析了
3.群体结构分析; 如果不知道理想的K值可以设定1-5进行分析
    for K in 1 2 3 4 5; do admixture --cv hapmap3.bed $K | tee log${K}.out; done
4.提取出CV值
    grep -h CV log*.out
5.使用R画图
    tbl=read.table("hapmap3.3.Q")
    barplot(t(as.matrix(tbl)), col=rainbow(3),xlab="Individual #", ylab="Ancestry", border=NA)   
TreeMix 
QPGRAPH
ADMIXTOOLS
ADMIXTUREGRAPH

5. Demographic Modeling

dadi_pipeline

6. 历史有效群体大小

> PSMC 
bcftools mpileup -Ou -I -f reference.fasta sample.bam | bcftools call -c -Ov | vcfutils.pl vcf2fq -d 10 -D 100 | gzip > diploid.fq.gz
## -Ou : 输出未压缩的bcf文件
## -I : skip indels
## -f reference fasta
## -c 使用原始版本的的calling算法(对应于新的-m)
## -Ov :输出未压缩vcf文件
## -d -D :depth的上下限

Stairway plot 2
SMC++
Fastsimcoal2 a

7. 进化、选择压力分析

HyPhy
1. 估计alingment范围内的唯一的w值:给定coden密码子比对以及序列的进化关系    
    Hyphy
    -> 6[Basic Analyses] 
    -> 1[Analyse codon data with a variery of standard models using given tree.]
    -> 1[Universal code]
    -> 选择文件:/home/wuzefeng/Documents/脚本代码/data/files/WestNileVirus_NS3.fas
    -> 模型选择:GY94CUSTOMF3X4
    -> 2 [Global] Model parameters are shared by all branches, branch lengths are estimated independently.
    -> input 6 character model designation (e.g:010010 defines HKY85):012345
    -> 1 [Please choose an option (or press q to cancel selection):1]
    结果: R代表得到的w值

2.  检测 alignment-wide episodic diversification.(片段性多样化选择、整体上或基因水平上的正选择位点比例,检测某个基因是否至少有一个位点经历了正选择,不是位点特异性的): 有两种方法:
    2.1 Run BUSTED to test for selection across the entire tree:BUSTED (Branch-site Unrestricted Statistical Test for Episodic Diversification) provides a gene-wide (not site-specific) test for positive selection by asking whether a gene has experienced positive selection at at least one site on at least one branch.
    Hyphy
    -> (1) Selection Analyses
    -> (5) [BUSTED] Test for episodic gene-wide selection using BUSTED (Branch-site Unrestricted Statistical Test of Episodic Diversification).
    -> 输入文件:/home/wuzefeng/Documents/脚本代码/data/hyphy_files/HIV.nex
    结果:5%左右的位点经历了正选择
    
    2.2 Run BUSTED to test for selection on specific a priori selection of foreground branches.
    -> 在http://veg.github.io/phylotree.js/ 选择前景分支
    -> -> (1) Selection Analyses
    -> (5) [BUSTED] Test for episodic gene-wide selection using BUSTED (Branch-site Unrestricted Statistical Test of Episodic Diversification).
    结果:A proportion of sites (∼0.078) is evolving with ω>1 on the specified set of foreground branch(es).

3. 检测分支特异性的选择压力:Use aBSREL to find lineages which have experienced episodic diversification.
  3.1 Run aBSREL to test for selection by scanning all branches in the tree.
  -> (1) Selection Analyses
  -> (6) [aBSREL] Test for lineage-specific evolution using the branch-site method aBS-REL (Adaptive Branch-Site Random Effects Likelihood).
  结果:列出经历正选择的分支。Once the analysis completes, aBSREL will print out the list of all branches with p-values below 0.05。 
  
  3.2Run BUSTED to test for selection by testing only an a priori selection of branches. This approach of analysis will have increased power to detect lineage-specific selection.
  # 标注前景分支,运行后,结果类似
    
4. 鉴定经历正选择的位点:
   4.1 FUBAR适合大数据:Use FUBAR to find sites which have experienced pervasive diversification.
    -> (1) Selection Analyses
    -> (4) [FUBAR] Test for pervasive site-level selection using FUBAR (Fast Unconstrained Bayesian AppRoximation for inferring selection)
    ->  选择文件:WestNileVirus_NS3.fas
   结果:249位点经历正选择
   
   4.2 使用meme检测正选择位点,速度稍慢,但是仍常用
   -> (1) Selection Analyses
   -> (1) [MEME] Test for episodic site-level selection using MEME (Mixed Effects Model of Evolution).
   -> 1. [**All**] Include all branches in the analysis
   结果:得到正选择的位点
   
  4.3 FEL and SLAC也可以用鉴定正选择位点,但是强烈推荐MEME or FUBAR
注意: 这几个方法中,MEME方法检测出正向选择的位点数量是最多的,SLAC检测出的数量是最少的。

5. 比较树的不同部分的选择压力或检测在不同的分支选择强度是否不同: Use RELAX to compare selective pressures on different parts of the tree   
  -> (1) Selection Analyses
  -> (7) [RELAX] Test for relaxation of selection pressure along a specified set of test branches using RELAX (a random effects test of selection relaxation).
  -> Choose the set of branches to use as the _test_ set: [**RECIPIENT**] Set RECIPIENT with 12 branches
  -> Choose the set of branches to use as the _reference_ set: [**DONOR**] Set DONOR with 13 branches
 结果:检测到test分支具有放松的选择压力: Evidence for *relaxation of selection* among **test** branches _relative_ to the **reference** branches at P<=0.05

总结: + fubra按照为点给出受选择的为点
     + absrel按照分支给出受选择的分支
     + busted给出整体基因受选择的为点的比例,但不知道那些分支或那些具体为点。 

PAML GRoSS method

ete3

1.ete3 进化树操作:

from ete3 import Tree
t = Tree()
t.populate(15) # 随机产生15个枝的树形结构

趋同进化

https://github.com/CarineRey/pcoc

功能富集

clusterprofiler
gostats
goatools
gprofile2

circos

ticks.conf 控制刻度显示

spacing = 10u # 显示刻度的多少

circos最大的点数为25000,如柱状图

结构变异软件

 MUMmer3+SyRi

motif格式转换

 universalmotif (bioconductor) : meme to homer
 biopython

双向best blast

metablastr (biocondcutor)
library(metablastr)
tair2medicago <- blast_best_reciprocal_hit(
    query = "~/Genomes/Plants/Arabidopsis_thaliana/Tair_longest.pep.fa",
    subject = "~/Genomes/Plants/Medicago_truncatula/Medicago_truncatula.mody.fa",
    search_type = "protein_to_protein",
    strand = "both",
    output.path = "~/Genomes/best_blast_hits/",
    is.subject.db = FALSE,
    task = "blastp",
    db.import = FALSE,
    postgres.user = NULL,
    evalue = 0.00001,
    out.format = "csv",
    cores = 4,
    max.target.seqs = 10000,
    db.soft.mask = FALSE,
    db.hard.mask = FALSE,
    blast.path = NULL
    )

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published