Source code and synthetic dataset for our paper:
Disparity Estimation Using a Quad-Pixel Sensor
BMVC 2024
Zhuofeng Wu, Doehyung Lee, Zihua Liu, Kazunori Yoshizaki, Yusuke Monno, Masatoshi Okutomi
@inproceedings{wu2024qpdnet,
title={Disparity Estimation Using a Quad-Pixel Sensor},
author={Zhuofeng Wu, Doehyung Lee, Zihua Liu, Kazunori Yoshizaki, Yusuke Monno, Masatoshi Okutomi},
booktitle={The 35th British Machine Vision Conference (BMVC)},
year={2024}
}
The code has been tested with PyTorch 1.11 and Cuda 11.3
conda env create -f env.yaml
conda activate qpdnet
Our synthetic dataset was generated by the recurrent-defocus-deblurring-synth-dual-pixel using Hypersim Dataset.
The dataset can be downloaded from QP-data.zip
python train_quad.py --batch_size 4 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --mixed_precision --datasets_path "training data path"
python train_quad.py --batch_size 4 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --mixed_precision --input_image_num 2 --datasets_path "training data path"
Pretrained models (full and half Quad-pixel data) can be downloaded from Google Drive.
python evaluate_quad.py --restore_ckpt "checkpoint path" --mixed_precision --save_result True --datasets_path "testing data path"
python evaluate_quad.py --restore_ckpt "checkpoint path" --mixed_precision --save_result True --input_image_num 2 --datasets_path "testing data path"
This project uses the following open-source projects and data. Please consider citing them if you use related functionalities.