Skip to content

Zhuofeng-Wu/QPDNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Disparity Estimation Using a Quad-Pixel Sensor

Project Page

Source code and synthetic dataset for our paper:

Disparity Estimation Using a Quad-Pixel Sensor
BMVC 2024
Zhuofeng Wu, Doehyung Lee, Zihua Liu, Kazunori Yoshizaki, Yusuke Monno, Masatoshi Okutomi

@inproceedings{wu2024qpdnet,
  title={Disparity Estimation Using a Quad-Pixel Sensor},
  author={Zhuofeng Wu, Doehyung Lee, Zihua Liu, Kazunori Yoshizaki, Yusuke Monno, Masatoshi Okutomi},
  booktitle={The 35th British Machine Vision Conference (BMVC)},
  year={2024}
}

Requirements

The code has been tested with PyTorch 1.11 and Cuda 11.3

conda env create -f env.yaml
conda activate qpdnet

Our Synthetic Data

Our synthetic dataset was generated by the recurrent-defocus-deblurring-synth-dual-pixel using Hypersim Dataset.
The dataset can be downloaded from QP-data.zip

Training

Training with full Quad-pixel data (Left-Center-Right and Top-Center-Bottom):

python train_quad.py --batch_size 4 --spatial_scale -0.2 0.4 --saturation_range 0 1.4  --mixed_precision  --datasets_path "training data path"

Training with half Quad-pixel data (Left-Center-Right) (equal to Dual-pixel data):

python train_quad.py --batch_size 4  --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --mixed_precision  --input_image_num 2 --datasets_path "training data path"

Evaluation

Checkpoints

Pretrained models (full and half Quad-pixel data) can be downloaded from Google Drive.

Evaluate with full Quad-pixel data (Left-Center-Right and Top-Center-Bottom):

python evaluate_quad.py --restore_ckpt "checkpoint path" --mixed_precision  --save_result True --datasets_path "testing data path"

Evaluate with half Quad-pixel data (Left-Center-Right) (equal to Dual-pixel data):

python evaluate_quad.py --restore_ckpt "checkpoint path" --mixed_precision  --save_result True --input_image_num 2 --datasets_path "testing data path"

Acknowledgement

This project uses the following open-source projects and data. Please consider citing them if you use related functionalities.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages