Skip to content

antoniuk1/SynthNN

Repository files navigation

SynthNN

This repository is the official implementation of SynthNN that is described in the paper "Predicting the Synthesizability of Crystalline Inorganic Materials from the Data of Known Material Compositions". (https://www.nature.com/articles/s41524-023-01114-4) This repository serves a few functions:

i) Reproduce all the figures in the paper.

ii) Obtain synthesizability predictions for a general composition for an inorganic crystalline material.

iii) Train your own material synthesizability model.

Table of Contents

How to cite

If you use SynthNN, please cite the following work:

@article{antoniuk_SynthNN_2023,
	title = {Predicting the synthesizability of crystalline inorganic materials from the data of known material compositions},
	volume = {9},
	copyright = {2023 Springer Nature Limited},
	issn = {2057-3960},
	url = {https://www.nature.com/articles/s41524-023-01114-4},
	doi = {10.1038/s41524-023-01114-4},
	language = {en},
	number = {1},
	urldate = {2023-09-07},
	journal = {npj Computational Materials},
	author = {Antoniuk, Evan R. and Cheon, Gowoon and Wang, George and Bernstein, Daniel and Cai, William and Reed, Evan J.},
	month = aug,
	year = {2023},
	note = {Number: 1
Publisher: Nature Publishing Group},
	keywords = {Computational methods, Design, synthesis and processing},
	pages = {1--11},
}

Prerequisites

Requirements:

Usage

Reproduce Figures

All figures in the manuscript can be reproduced with the Figure_Reproduction Jupyter Notebook. Note that a significant number of the figures depend on having access to the full ICSD dataset, which cannot be shared in this repo due to ICSD License Agreement. However, all figures can be reproduced with the provided pre-processed data in the 'Figure_data' folder.

Predict Synthesizability

Predicting the synthesizability of a material composition with a pre-trained version of SynthNN can be done with SynthNN_predict.ipynb. We recommend referring to the below performance metrics when choosing a decision threshold to label a material as synthesizable or not. The below table indicates the performance of SynthNN of a dataset with a 20:1 ratio of unsynthesized:synthesized examples. Note, a threshold value of '0.10' means that any material with a SynthNN output greater than 0.10 is taken to be synthesizable, which leads to low precision but high recall.

Threshold Precision Recall
0.10 0.239 0.859
0.20 0.337 0.783
0.30 0.419 0.721
0.40 0.491 0.658
0.50 0.563 0.604
0.60 0.628 0.545
0.70 0.702 0.483
0.80 0.765 0.404
0.90 0.851 0.294

Retrain SynthNN

A new SynthNN model can be trained from scratch with the train_SynthNN.ipynb Jupyter Notebook. Simply edit the 'positive_example_file_path' and 'negative_example_file_path' dictionary entries to point to your list of synthesized and unsynthesized materials, respectively. By default, trained model weights will be saved in the specified 'Trained_models' folder.

Data

The Synthesizability Dataset used in this work was obtained from the ICSD API. If the ICSD API is not accessible, all figures can still be reproduced with the pre-processed data given in the "Figure_data" directory.

Authors

This code was primarily written by Evan Antoniuk ([email protected]).

License

SynthNN is released under the MIT License.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published