-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
260 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,259 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Plot command for DiscSolver | ||
""" | ||
from numpy import degrees, sqrt, tan | ||
import matplotlib.pyplot as plt | ||
|
||
from ..solve.deriv_funcs import deriv_B_r_func | ||
from ..utils import ODEIndex | ||
|
||
from .utils import ( | ||
single_solution_plotter, analyse_main_wrapper, analysis_func_wrapper, | ||
common_plotting_options, get_common_plot_args, plot_output_wrapper, | ||
AnalysisError, | ||
) | ||
|
||
plt.style.use("bmh") | ||
|
||
|
||
def plot_parser(parser): | ||
""" | ||
Add arguments for plot command to parser | ||
""" | ||
common_plotting_options(parser) | ||
parser.add_argument("--only", default=None) | ||
return parser | ||
|
||
|
||
def get_plot_args(args): | ||
""" | ||
Parse plot args | ||
""" | ||
return { | ||
"only": args.get("only", None) | ||
} | ||
|
||
|
||
@analyse_main_wrapper( | ||
"Main plotter for DiscSolver", | ||
plot_parser, | ||
cmd_parser_splitters={ | ||
"common_plot_args": get_common_plot_args, | ||
"plot_args": get_plot_args, | ||
} | ||
) | ||
def plot_main(soln, *, soln_range, common_plot_args, plot_args): | ||
""" | ||
Entry point for ds-plot | ||
""" | ||
return plot(soln, soln_range=soln_range, **common_plot_args, **plot_args) | ||
|
||
|
||
@analysis_func_wrapper | ||
def plot( | ||
soln, *, soln_range=None, plot_filename=None, show=False, linestyle='-', | ||
stop=90, figargs=None, title=None, close=True, only=None, | ||
): | ||
""" | ||
Plot solution to file | ||
""" | ||
# pylint: disable=too-many-function-args,unexpected-keyword-arg | ||
fig = generate_plot( | ||
soln, soln_range, linestyle=linestyle, figargs=figargs, title=title, | ||
stop=stop, only=only | ||
) | ||
|
||
return plot_output_wrapper( | ||
fig, file=plot_filename, show=show, close=close | ||
) | ||
|
||
|
||
@single_solution_plotter | ||
def generate_plot( | ||
soln, *, linestyle='-', stop=90, figargs=None, only=None | ||
): | ||
""" | ||
Generate plot, with enough freedom to be able to format fig | ||
""" | ||
if figargs is None: | ||
figargs = {} | ||
|
||
angles = soln.angles | ||
indexes = degrees(angles) <= stop | ||
plot_angles = degrees(angles[indexes]) | ||
|
||
components = compute_components(soln, indexes, angles[indexes]) | ||
|
||
if only: | ||
fig, ax = plt.subplots(constrained_layout=True, **figargs) | ||
comps = components.get(only) | ||
if comps is None: | ||
raise AnalysisError("{} not found".format(only)) | ||
|
||
for label, values in comps.items(): | ||
ax.plot(plot_angles, values, linestyle, label=label) | ||
|
||
ax.set_xlabel("angle from plane (°)") | ||
ax.set_ylabel(only) | ||
ax.legend(loc=0) | ||
|
||
else: | ||
fig, axes = plt.subplots( | ||
nrows=2, ncols=4, constrained_layout=True, sharex=True, | ||
gridspec_kw=dict(hspace=0), **figargs | ||
) | ||
|
||
# only add label to bottom plots | ||
for ax in axes[1]: | ||
ax.set_xlabel("angle from plane (°)") | ||
|
||
for ax, comp_pair in zip(axes.flat, components.items()): | ||
eq_name, comps = comp_pair | ||
ax.set_ylabel(eq_name) | ||
for label, values in comps.items(): | ||
ax.plot(plot_angles, values, linestyle, label=label) | ||
|
||
ax.legend(loc=0) | ||
|
||
return fig | ||
|
||
|
||
def compute_components(soln, indexes, angles): | ||
""" | ||
Return mapping containing all the components | ||
""" | ||
solution = soln.solution | ||
cons = soln.initial_conditions | ||
|
||
B_r = solution[indexes, ODEIndex.B_r] | ||
B_φ = solution[indexes, ODEIndex.B_φ] | ||
B_θ = solution[indexes, ODEIndex.B_θ] | ||
v_r = solution[indexes, ODEIndex.v_r] | ||
v_φ = solution[indexes, ODEIndex.v_φ] | ||
v_θ = solution[indexes, ODEIndex.v_θ] | ||
ρ = solution[indexes, ODEIndex.ρ] | ||
deriv_B_φ = solution[indexes, ODEIndex.B_φ_prime] | ||
η_O = solution[indexes, ODEIndex.η_O] | ||
η_A = solution[indexes, ODEIndex.η_A] | ||
η_H = solution[indexes, ODEIndex.η_H] | ||
|
||
γ = cons.γ | ||
a_0 = cons.a_0 | ||
norm_kepler_sq = cons.norm_kepler_sq | ||
|
||
norm_kepler = sqrt(norm_kepler_sq) | ||
|
||
B_mag = sqrt(B_r**2 + B_φ**2 + B_θ**2) | ||
norm_B_r, norm_B_φ, norm_B_θ = B_r/B_mag, B_φ/B_mag, B_θ/B_mag | ||
|
||
deriv_B_r = deriv_B_r_func( | ||
B_r=B_r, B_φ=B_φ, B_θ=B_θ, η_O=η_O, η_H=η_H, η_A=η_A, θ=angles, | ||
v_r=v_r, v_θ=v_θ, deriv_B_φ=deriv_B_φ, γ=γ, | ||
) | ||
|
||
deriv_v_θ = ( | ||
v_r / 2 * (v_θ ** 2 - 4 * γ) + v_θ * ( | ||
tan(angles) * (v_φ ** 2 + 1) + a_0 / ρ * ( | ||
(1/4 - γ) * B_θ * B_r + B_r * deriv_B_r + | ||
B_φ * deriv_B_φ - B_φ ** 2 * tan(angles) | ||
) | ||
) | ||
) / ((1 - v_θ) * (1 + v_θ)) | ||
|
||
components = { | ||
"radial momentum": { | ||
"radial terms": v_r ** 2 + v_θ ** 2 + 5 / 2 - 2 * γ, | ||
"keplerian terms": (v_φ - norm_kepler) * (v_φ + norm_kepler), | ||
"magnetic terms": ( | ||
a_0 / ρ * (B_θ * deriv_B_r + (1/4 - γ) * (B_θ ** 2 + B_φ ** 2)) | ||
), | ||
"all terms": ( | ||
v_r ** 2 / 2 + v_θ ** 2 + 5/2 - 2 * γ + | ||
(v_φ - norm_kepler) * (v_φ + norm_kepler) + a_0 / ρ * ( | ||
B_θ * deriv_B_r + (1/4 - γ) * (B_θ ** 2 + B_φ ** 2) | ||
) | ||
), | ||
}, | ||
"azimuthal momentum": { | ||
"non-magnetic terms": v_φ * v_θ * tan(angles) - v_φ * v_r / 2, | ||
"magnetic terms": a_0 / ρ * ( | ||
B_θ * deriv_B_φ - (1/4 - γ) * B_r * B_φ - | ||
B_θ * B_φ * tan(angles) | ||
), | ||
"all terms": ( | ||
v_φ * v_θ * tan(angles) - v_φ * v_r / 2 + a_0 / ρ * ( | ||
B_θ * deriv_B_φ - (1/4 - γ) * B_r * B_φ - | ||
B_θ * B_φ * tan(angles) | ||
) | ||
), | ||
}, | ||
"polar momentum": { | ||
"no-B no-v_φ terms": v_r / 2 * (v_θ ** 2 - 4 * γ), | ||
"no-B v_φ terms": v_θ * tan(angles) * (v_φ ** 2 + 1), | ||
"magnetic terms": ( | ||
v_θ * a_0 / ρ * ( | ||
(1/4 - γ) * B_θ * B_r + B_r * deriv_B_r + | ||
B_φ * deriv_B_φ - B_φ ** 2 * tan(angles) | ||
) | ||
), | ||
"all terms": ( | ||
v_r / 2 * (v_θ ** 2 - 4 * γ) + v_θ * ( | ||
tan(angles) * (v_φ ** 2 + 1) + a_0 / ρ * ( | ||
(1/4 - γ) * B_θ * B_r + B_r * deriv_B_r + | ||
B_φ * deriv_B_φ - B_φ ** 2 * tan(angles) | ||
) | ||
) | ||
), | ||
}, | ||
"continuity": { | ||
"tan term": v_θ * tan(angles), | ||
"non-tan terms": - (2 * γ * v_r + deriv_v_θ), | ||
"all terms": - (2 * γ * v_r + deriv_v_θ) + v_θ * tan(angles), | ||
}, | ||
"solenoid condition": { | ||
"B_θ terms": B_θ * tan(angles), | ||
"B_r terms": - (γ + 3/4) * B_r, | ||
"all terms": B_θ * tan(angles) - (γ + 3/4) * B_r, | ||
}, | ||
"polar induction": { | ||
"v terms": (v_θ * B_r - v_r * B_θ) / ( | ||
η_O + η_A * (1 - norm_B_φ) * (1 + norm_B_φ) | ||
), | ||
"no-η terms": - B_θ * (1/4 - γ), | ||
"$B_φ'$ terms": - deriv_B_φ * ( | ||
η_H * norm_B_θ + η_A * norm_B_r * norm_B_φ | ||
) / ( | ||
η_O + η_A * (1 - norm_B_φ) * (1 + norm_B_φ) | ||
), | ||
"$B_φ$ terms": B_φ * ( | ||
η_A * norm_B_φ * ( | ||
norm_B_r * tan(angles) - norm_B_θ * (1/4 - γ) | ||
) + η_H * ( | ||
norm_B_r * (1/4 - γ) + norm_B_θ * tan(angles) | ||
) | ||
) / ( | ||
η_O + η_A * (1 - norm_B_φ) * (1 + norm_B_φ) | ||
), | ||
"all terms": ( | ||
( | ||
v_θ * B_r - v_r * B_θ - deriv_B_φ * ( | ||
η_H * norm_B_θ + | ||
η_A * norm_B_r * norm_B_φ | ||
) + B_φ * ( | ||
η_A * norm_B_φ * ( | ||
norm_B_r * tan(angles) - | ||
norm_B_θ * (1/4 - γ) | ||
) + η_H * ( | ||
norm_B_r * (1/4 - γ) + | ||
norm_B_θ * tan(angles) | ||
) | ||
) | ||
) / ( | ||
η_O + η_A * (1 - norm_B_φ) * (1 + norm_B_φ) | ||
) - B_θ * (1/4 - γ) | ||
), | ||
}, | ||
} | ||
|
||
return components |