Skip to content

arpitg91/AdvancedModellingUtilities

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Advanced Modelling Utilties

This repository contains wrapper classes for advanced modelling algorithms in python. Using these classes, these models can be used just like another model in sklearn. These classes can also be used directly in sklearn.cross_validation for cross validation. Below is the usage of these algorithms.

Neural Network

Required Package: keras

clf=NN(inputShape = train.shape[1], layers = [128, 64], dropout = [0.5, 0.5], loss='mae', optimizer = 'adadelta', init = 'glorot_normal', nb_epochs = 5)

clf.fit(train, labels)

train_pred = clf.predict(train)[:,0]

XGBoost

Required Package: xgboost

model=params = {'booster':booster, 'max_depth':max_depth, 'objective':objective, 'eval_metric':['logloss','rmse'],'nthread':16,'eta':0.05,'min_child_weight':100}

model.fit(train_features,y_train)

model.predict(test_features)

About

SKLearn equivalent of advanced modelling alorithms

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages