Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Examples] SageMaker Pipelines distributed training #1126

Merged
merged 9 commits into from
Jan 14, 2025
Merged
9 changes: 6 additions & 3 deletions .github/workflow_scripts/lint_check.sh
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
# Move to parent directory
cd ../../

#!/usr/bin/env bash
set -ex

# Move to repo root
cd ../../

pip install pylint==2.17.5

pylint --rcfile=./tests/lint/pylintrc ./python/graphstorm/*.py
pylint --rcfile=./tests/lint/pylintrc ./python/graphstorm/data/*.py
pylint --rcfile=./tests/lint/pylintrc ./python/graphstorm/distributed/
Expand All @@ -21,3 +23,4 @@ pylint --rcfile=./tests/lint/pylintrc ./python/graphstorm/utils.py
pylint --rcfile=./tests/lint/pylintrc ./tools/convert_feat_to_wholegraph.py

pylint --rcfile=./tests/lint/pylintrc ./python/graphstorm/sagemaker/
pylint --rcfile=./tests/lint/pylintrc ./examples/sagemaker-pipelines-graphbolt/ --recursive y
39 changes: 39 additions & 0 deletions examples/sagemaker-pipelines-graphbolt/Dockerfile.processing
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
FROM public.ecr.aws/ubuntu/ubuntu:22.04

# Avoid prompts from apt
ENV DEBIAN_FRONTEND=noninteractive

# Install Python and other dependencies
RUN apt-get update && apt-get install -y \
axel \
curl \
python3 \
python3-pip \
tree \
unzip \
&& rm -rf /var/lib/apt/lists/*

# Copy and install ripunzip
COPY ripunzip_2.0.0-1_amd64.deb ripunzip_2.0.0-1_amd64.deb
thvasilo marked this conversation as resolved.
Show resolved Hide resolved
RUN apt-get install -y ./ripunzip_2.0.0-1_amd64.deb

RUN python3 -m pip install --no-cache-dir --upgrade pip==24.3.1 && \
python3 -m pip install --no-cache-dir \
numpy==1.26.4 \
psutil==6.1.0 \
pyarrow==18.1.0 \
tqdm==4.67.1 \
tqdm-loggable==0.2

# Install aws cli
RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" \
&& unzip awscliv2.zip \
&& ./aws/install

# Copy processing scripts
COPY process_papers100M.sh /opt/ml/code/
COPY convert_ogb_papers100m_to_gconstruct.py /opt/ml/code/

WORKDIR /opt/ml/code/

CMD ["bash", "/opt/ml/code/process_papers100M.sh"]
542 changes: 542 additions & 0 deletions examples/sagemaker-pipelines-graphbolt/README.md

Large diffs are not rendered by default.

309 changes: 309 additions & 0 deletions examples/sagemaker-pipelines-graphbolt/analyze_training_time.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,309 @@
"""
Copyright Contributors

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Analyzes the epoch and evaluation time for GraphStorm training jobs.
"""

import argparse
import re
import time
from datetime import datetime, timedelta
from typing import Iterator, Dict, List, Union

import boto3

LOG_GROUP = "/aws/sagemaker/TrainingJobs"


def parse_args():
"""Parse log analysis args."""
parser = argparse.ArgumentParser(
description="Analyze training epoch and eval time."
)
source_group = parser.add_mutually_exclusive_group(required=True)
# Add pipeline name as arg
source_group.add_argument(
"--pipeline-name",
type=str,
help="The name of the pipeline.",
)
# Add execution id as arg
parser.add_argument(
"--execution-name",
type=str,
help="The display name of the execution.",
)
source_group.add_argument(
"--log-file",
type=str,
help="The name of a file containing logs from a local pipeline execution.",
)

parser.add_argument(
"--region",
type=str,
default="us-east-1",
help="The region of the log stream.",
)
parser.add_argument(
"--verbose",
type=bool,
default=False,
help="Whether to print verbose output.",
)
# Add days past as arg
parser.add_argument(
"--logs-days-before",
type=int,
default=2,
help="Limit log analysis to logs created this many days before today.",
)
return parser.parse_args()


def read_local_logs(file_path: str) -> Iterator[Dict]:
"""Read logs from a local file and yield them in a format similar to CloudWatch events."""
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
yield {
"message": line.strip(),
"timestamp": int(time.time() * 1000), # Current time in milliseconds
}


def get_pipeline_execution_arn(pipeline_name: str, execution_name: str) -> str:
"""Get the execution ARN from a pipeline name and display name for the execution."""
sm_client = boto3.client("sagemaker")

try:
# List pipeline executions and find the matching one
paginator = sm_client.get_paginator("list_pipeline_executions")
for page in paginator.paginate(PipelineName=pipeline_name):
for execution in page["PipelineExecutionSummaries"]:
if execution_name in execution["PipelineExecutionDisplayName"]:
return execution["PipelineExecutionArn"]

raise ValueError(
f"No execution found with display name {execution_name} in pipeline {pipeline_name}"
)

except Exception as e:
print(f"Error getting pipeline execution ARN: {e}")
raise e


def get_cloudwatch_logs(
logs_client, log_group: str, log_stream: str, start_time: int, end_time: int
) -> Iterator[Dict]:
"""Get logs containing 'INFO' and either 'Epoch' or 'eval' from CloudWatch as a generator."""
paginator = logs_client.get_paginator("filter_log_events")

for page in paginator.paginate(
logGroupName=log_group,
logStreamNames=[log_stream],
startTime=start_time,
endTime=end_time,
filterPattern="INFO ?Epoch ?eval",
):
events_generator: Iterator = page.get("events", [])
yield from events_generator


def analyze_logs(
log_source: Union[str, tuple[str, str, str]],
days_before: int = 2,
):
"""
Analyze logs from either CloudWatch or a local file.

Args:
log_source: Either a path to a local file (str) or a tuple of
(pipeline_name, execution_id, step_name)
days_before: Number of days in the past to start analyzing logs
"""

# Gather events, either from file or from CloudWatch
if isinstance(log_source, str):
print(f"Reading logs from file: {log_source}")
log_events = read_local_logs(log_source)
else:
try:
start_time = int(
(datetime.now() - timedelta(days=days_before)).timestamp() * 1000
)
end_time = int(datetime.now().timestamp() * 1000)

# Unpack the logs source
pipeline_name, execution_name, step_name = log_source

# Get the training job name which is the prefix of the log stream
train_job_id = get_training_job_name(
pipeline_name, execution_name, step_name
)

# Get the log stream
logs_client = boto3.client("logs")
# Get log streams that match the prefix
log_streams_response = logs_client.describe_log_streams(
logGroupName=LOG_GROUP,
logStreamNamePrefix=train_job_id,
)

for log_stream in log_streams_response["logStreams"]:
if "algo-1" in log_stream["logStreamName"]:
log_stream_name = log_stream["logStreamName"]
break
else:
raise RuntimeError(
f"No log stream found with prefix {train_job_id}/algo-1"
)

print(f"Analyzing log stream: {log_stream_name}")
print(f"Time range: {datetime.fromtimestamp(start_time/1000)}")
print(f" to: {datetime.fromtimestamp(end_time/1000)}")

log_events = get_cloudwatch_logs(
logs_client, LOG_GROUP, log_stream, start_time, end_time
)
except Exception as e:
print(f"Error while retrieving logs from CloudWatch: {e}")
raise e

# Patterns for both types of logs
epoch_pattern = re.compile(r"INFO:root:Epoch (\d+) take (\d+\.\d+) seconds")
eval_pattern = re.compile(
r"INFO:root: Eval time: (\d+\.\d+), Evaluation step: (\d+)"
)
epochs_data = []
eval_data = []

for event in log_events:
epoch_match = epoch_pattern.search(event["message"])
eval_match = eval_pattern.search(event["message"])

if epoch_match:
epochs_data.append(
{
"epoch": int(epoch_match.group(1)),
"time": float(epoch_match.group(2)),
"timestamp": datetime.fromtimestamp(event["timestamp"] / 1000),
}
)
elif eval_match:
eval_data.append(
{
"time": float(eval_match.group(1)),
"step": int(eval_match.group(2)),
"timestamp": datetime.fromtimestamp(event["timestamp"] / 1000),
}
)

# We have gathered the relevant events, return for processing
return epochs_data, eval_data


def get_training_job_name(pipeline_name: str, execution_id: str, step_name: str) -> str:
"""Get training job name for a step in a specific pipeline execution"""
sm_client = boto3.client("sagemaker")

try:
# Get the full execution ARN first
execution_arn = get_pipeline_execution_arn(pipeline_name, execution_id)
print(f"Found execution ARN: {execution_arn}")

# Get the pipeline execution details
execution_steps = sm_client.list_pipeline_execution_steps(
PipelineExecutionArn=execution_arn
)

# Find the desired step
target_step = None
for step in execution_steps["PipelineExecutionSteps"]:
if step["StepName"] == step_name:
target_step = step
break
else:
raise ValueError(f"Step '{step_name}' not found in pipeline execution")

# Get the training job name from metadata
metadata = target_step["Metadata"]
if "TrainingJob" not in metadata:
raise ValueError(f"No training job found in step '{step_name}'")

training_job_name = metadata["TrainingJob"]["Arn"].split("/")[-1]

return training_job_name

except Exception as e:
print(f"Error while getting training job name: {e}")
raise e


def print_training_summary(
epochs_data: List[Dict], eval_data: List[Dict], verbose: bool
):
"""Prints a summary of the epoch time and eval time for a GraphStorm training job"""

print("\n=== Training Epochs Summary ===")
if epochs_data:
total_epochs = len(epochs_data)
avg_time = sum(e["time"] for e in epochs_data) / total_epochs

print(f"Total epochs completed: {total_epochs}")
print(f"Average epoch time: {avg_time:.2f} seconds")

if verbose:
print("\nEpoch Details:")
for data in epochs_data:
print(
f"Epoch {data['epoch']:3d}: {data['time']:6.2f} seconds "
f"[{data['timestamp'].strftime('%Y-%m-%d %H:%M:%S')}]"
)

print("\n=== Evaluation Summary ===")
if eval_data:
total_evals = len(eval_data)
avg_eval_time = sum(e["time"] for e in eval_data) / total_evals

print(f"Total evaluations: {total_evals}")
print(f"Average evaluation time: {avg_eval_time:.2f} seconds")

if verbose:
print("\nEvaluation Details:")
for data in eval_data:
print(
f"Step {data['step']:4d}: {data['time']:6.2f} seconds "
f"[{data['timestamp'].strftime('%Y-%m-%d %H:%M:%S')}]"
)


if __name__ == "__main__":
args = parse_args()
client = boto3.client("logs", region_name=args.region)
if args.log_file:
log_representation = args.log_file
else:
log_stream_prefix = get_training_job_name(
args.pipeline_name, args.execution_name, "Training"
)
log_representation = (args.pipeline_name, args.execution_name, "Training")
# Get the training job name which is the prefix of the log stream
print(f"Found training job: {log_stream_prefix}")

retrieved_epochs_data, retrieved_eval_data = analyze_logs(
log_representation, args.logs_days_before
)

print_training_summary(retrieved_epochs_data, retrieved_eval_data, args.verbose)
Loading
Loading