Skip to content

ParameterPriors

Marc Suchard edited this page Apr 28, 2015 · 1 revision

A description of the default priors on each parameter of the standard models in BEAUti

Introduction

The aim is to provide every parameter with a proper and reasonable prior. This document is to describe our choices and the rationale behind each.

Parameters

Substitution Models

Parameter Description Bounds Default Prior Editable in BEAUTi Rationale/Comments
*.frequencies base frequencies 0 <= \pi_i <= \sum pi_i = 1 Uniform / Dirichlet(1,...,1) Y Dirichlet(1,\ldots,1) is uniform over this hyperplane
*.kappa HKY transition-transversion parameter 0,+Inf Log-Normal(M=1,S=1.25) Y Gamma(1/a,a) for a large is relatively uninformative - biological kappa values are greater than 1, but not much greater than 10. This prior is moderately diffuse with a median of 2.718
*.kappa1 TN93 1st transition-transversion parameter 0,+Inf Log-Normal(M=1,S=1.25) Y biological kappa values are greater than 1, but not much greater than 10. This prior is moderately diffuse with a median of 2.718
*.kappa2 TN93 2nd transition-transversion parameter 0,+Inf Log-Normal(M=1,S=1.25) Y biological kappa values are greater than 1, but not much greater than 10. This prior is moderately diffuse with a median of 2.718
*.ac, *.at, *.cg, *.gt GTR A-C, A-T, C-G, G-T substitution parameters 0,+Inf Gamma(0.05,10) Y If the GTR parameters are scale to C-T (a transition) then these four transversions should have a prior with a mean below 1. This prior is diffuse with a mean of 0.5. _A quote from Marc:_For the GTR, I think a hierarchical prior could be a reasonable way to go. All rates, rate_i, draw IID from a common distribution (say, log-Normal) with an estimable mean and variance. If one type of transition is not observed, the rate will become the mean of the others. Hierarchical priors generally provide the most statistically efficient estimators.
*.ag GTR A-G substitution parameter 0,+Inf Gamma(0.05,20) Y If the GTR parameters are scaled to C-T (a transition) then the other transition should have a prior with a mean of 1. This prior is moderately diffuse with a mean of 1
hfrequencies Binary Covarion frequencies of the hidden rates 0 <= \pi_i <= \sum \pi_i = 1 Uniform / Dirichlet(1,1) Y
bcov.alpha Binary Covarion rate of evolution in slow mode 0,1 Beta Y Beta(1,1) is uniform
bcov.s Binary Covarion rate of flipping between slow and fast modes 0,+Inf Gamma(0.05, 10) Y The covarion model is normalized by setting the fast rate to 1.0. If the switching rate is much faster than the fast rate, then the covarion aspect of the model is a bit pointless. I have no good feeling for this, but would suggest a diffuse prior with a mean below 1.

Site Models

Parameter Description Bounds Default Prior Editable in BEAUTi Rationale/Comments
*.alpha Gamma shape parameter 1E-8,+Inf Gamma Y The lower bound is to prevent numerical issues with the quantiles for exceptionally low values
*.pInv proportion of invariant sites parameter 0,1 Beta Y Beta(1,1) is uniform
*.mu relative rate parameter 0,+Inf Gamma Y

Clock Models

Parameter Description Bounds Default Prior Editable in BEAUTi Rationale/Comments
clock.rate Strict clock substitution rate 0,+Inf Gamma Y
uced.mean uncorrelated exponential relaxed clock mean 0,+Inf Gamma Y
ucld.mean uncorrelated lognormal relaxed clock mean 0,+Inf Gamma Y
ucld.stdev uncorrelated lognormal relaxed clock stdev Exp(mean=0.333) Gamma Y
branchRates.var autocorrelated lognormal relaxed clock rate variance 0,+Inf Gamma Y
branchRates.categories relaxed clock branch rate categories 0,branches integer N
*.rates random local clock rates 0,+Inf Gamma N
*. changes random local clock rate change indicator 0,1 Integer N
treeModel.rootRate autocorrelated lognormal relaxed clock root rate 0,+Inf Gamma N
treeModel.nodeRates autocorrelated lognormal relaxed clock non-root rates 0,+Inf Uniform N

Tree Models

Parameter Description Bounds Default Prior Editable in BEAUTi Rationale/Comments
treeModel.rootHeight root height of the tree 0,+Inf Tree Prior Y
treeModel.internalNodeHeights internal node heights of the tree (except the root) dynamic Tree Prior N

Tree Priors

Parameter Description Bounds Default Prior Editable in BEAUTi Rationale/Comments
constant.popSize coalescent population size parameter 0,+Inf Jeffreys (1/x) Y
exponential.popSize coalescent population size parameter 0,+Inf Jeffreys (1/x) Y
exponential.growthRate coalescent growth rate parameter -Inf,+Inf Y
exponential.doublingTime coalescent doubling time parameter 0,+Inf Y
logistic.popSize coalescent population size parameter 0,+Inf Jeffreys (1/x) Y
logistic.growthRate coalescent logistic growth rate parameter 0,+Inf
logistic.doublingTime coalescent doubling time parameter 0,+Inf Y
logistic.t50 logistic shape parameter 0,+Inf Y
expansion.popSize coalescent population size parameter 0,+Inf Jeffreys (1/x) Y
expansion.growthRate coalescent logistic growth rate parameter 0,+Inf Y
expansion.doublingTime coalescent doubling time parameter 0,+Inf Y
expansion.ancestralProportion ancestral population proportion 0,1 Y
skyline.popSize Bayesian Skyline population sizes 0,+Inf Exponential Markov Y
skyline.groupSize Bayesian Skyline group sizes 1,node count Integer Y
skyride.logPopSize GMRF Bayesian skyride population sizes -Inf,+Inf GMRF N skyride.logPopSize is log unit unlike other popSize
skyride.precision GMRF Bayesian skyride precision 0,+Inf Gamma Y
demographic.popSize Extended Bayesian Skyline population sizes 0,+Inf N
demographic.indicators Extended Bayesian Skyline population switch 1,node count Integer N
demographic.populationMean Extended Bayesian Skyline population prior mean 0,+Inf Jeffreys (1/x) Y
demographic.populationSizeChanges Average number of population change points 0,x Poisson Y
yule.birthRate Yule speciation process birth rate 0,+Inf Y
birthDeath.meanGrowthRate Birth-Death speciation process rate 0,+Inf Y
birthDeath.relativeDeath Death/Birth speciation process relative death rate 0,+Inf Y

Star BEAST

Parameter Description Bounds Default Prior Editable in BEAUTi Rationale/Comments
species.popMean Hype-prior on population sizes 0,+Inf Jeffreys (1/x) Y
species.yule.birthRate Tree birth rate 0,+Inf Jeffreys (1/x) Y
species.birthDeath.meanGrowthRate Tree mean growth rate (birth-death) 0,+Inf Jeffreys (1/x) Y
species.birthDeath.relativeDeathRate Tree relative death rate (death/birth) [0,1] uniform on [0,1] Y
speciesTree.splitPopSize species tree population sizes 0,+Inf Gamma(2, species.popMean) for internal, Gamma(4, species.popMean) for tips N
Clone this wiki locally