Skip to content

Commit

Permalink
Merge pull request #435 from madsbk/numpy_backport
Browse files Browse the repository at this point in the history
Numpy backport
  • Loading branch information
madsbk authored Oct 13, 2017
2 parents 03ff3c1 + 5feed5e commit 0a4f92d
Show file tree
Hide file tree
Showing 6 changed files with 113 additions and 11 deletions.
3 changes: 2 additions & 1 deletion bridge/npbackend/bohrium/array_manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from . import bhary
from . import _util
from .bhary import fix_biclass_wrapper
from . import numpy_backport


@fix_biclass_wrapper
Expand Down Expand Up @@ -154,7 +155,7 @@ def diagonal(ary, offset=0, axis1=0, axis2=1):
ary = ary[..., :diag_size, offset:(offset + diag_size)]

ret_strides = ary.strides[:-2] + (ary.strides[-1] + ary.strides[-2],)
return numpy.lib.stride_tricks.as_strided(ary, shape=ret_shape, strides=ret_strides)
return numpy_backport.as_strided(ary, shape=ret_shape, strides=ret_strides)


@fix_biclass_wrapper
Expand Down
3 changes: 2 additions & 1 deletion bridge/npbackend/bohrium/bhary.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ If not, see <http://www.gnu.org/licenses/>.
import sys
from ._util import dtype_equal, dtype_support, dtype_in
from . import target
from . import numpy_backport
import operator
import functools
import numpy_force as numpy
Expand Down Expand Up @@ -234,7 +235,7 @@ def get_bhc(ary):
# All this is simply a hack to reinterpret 'ary' as a complex view of the 'base'
offset = (get_cdata(ary) - get_cdata(base)) // base.itemsize
cary = numpy.frombuffer(base, dtype=base.dtype, offset=offset * base.itemsize)
cary = numpy.lib.stride_tricks.as_strided(cary, ary.shape, ary.strides, subok=True)
cary = numpy_backport.as_strided(cary, ary.shape, ary.strides)

# if the view/base offset is aligned with the complex dtype, we know that the
# 'ary' is a view of the real part of 'base'
Expand Down
99 changes: 99 additions & 0 deletions bridge/npbackend/bohrium/numpy_backport.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
"""
NumPy backport implementations
==============================
We use some NumPy functions introduced in later version of NumPy.
This module implement those versions
"""

import numpy_force as numpy


# NB: The older version of NumPy `as_strided()` does'nt support `subok` so we include the implementation here and
# makes `subok` default true.
def as_strided(x, shape=None, strides=None, subok=True, writeable=True):
"""
Create a view into the array with the given shape and strides.
.. warning:: This function has to be used with extreme care, see notes.
Parameters
----------
x : ndarray
Array to create a new.
shape : sequence of int, optional
The shape of the new array. Defaults to ``x.shape``.
strides : sequence of int, optional
The strides of the new array. Defaults to ``x.strides``.
subok : bool, optional
.. versionadded:: 1.10
If True, subclasses are preserved.
writeable : bool, optional
.. versionadded:: 1.12
If set to False, the returned array will always be readonly.
Otherwise it will be writable if the original array was. It
is advisable to set this to False if possible (see Notes).
Returns
-------
view : ndarray
See also
--------
broadcast_to: broadcast an array to a given shape.
reshape : reshape an array.
Notes
-----
``as_strided`` creates a view into the array given the exact strides
and shape. This means it manipulates the internal data structure of
ndarray and, if done incorrectly, the array elements can point to
invalid memory and can corrupt results or crash your program.
It is advisable to always use the original ``x.strides`` when
calculating new strides to avoid reliance on a contiguous memory
layout.
Furthermore, arrays created with this function often contain self
overlapping memory, so that two elements are identical.
Vectorized write operations on such arrays will typically be
unpredictable. They may even give different results for small, large,
or transposed arrays.
Since writing to these arrays has to be tested and done with great
care, you may want to use ``writeable=False`` to avoid accidental write
operations.
For these reasons it is advisable to avoid ``as_strided`` when
possible.
"""

class DummyArray(object):
"""Dummy object that just exists to hang __array_interface__ dictionaries
and possibly keep alive a reference to a base array.
"""

def __init__(self, interface, base=None):
self.__array_interface__ = interface
self.base = base

def _maybe_view_as_subclass(original_array, new_array):
if type(original_array) is not type(new_array):
# if input was an ndarray subclass and subclasses were OK,
# then view the result as that subclass.
new_array = new_array.view(type=type(original_array))
# Since we have done something akin to a view from original_array, we
# should let the subclass finalize (if it has it implemented, i.e., is
# not None).
if new_array.__array_finalize__:
new_array.__array_finalize__(original_array)
return new_array

# first convert input to array, possibly keeping subclass
x = numpy.array(x, copy=False, subok=subok)
interface = dict(x.__array_interface__)
if shape is not None:
interface['shape'] = tuple(shape)
if strides is not None:
interface['strides'] = tuple(strides)

array = numpy.asarray(DummyArray(interface, base=x))
# The route via `__interface__` does not preserve structured
# dtypes. Since dtype should remain unchanged, we set it explicitly.
array.dtype = x.dtype
view = _maybe_view_as_subclass(x, array)

if view.flags.writeable and not writeable:
view.flags.writeable = False
return view
10 changes: 5 additions & 5 deletions bridge/npbackend/bohrium/reorganization.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,14 @@
"""
import warnings
import numpy_force as numpy
from numpy.lib.stride_tricks import as_strided
from . import bhary
from ._util import is_scalar
from .bhary import fix_biclass_wrapper, get_bhc
from . import target
from . import array_create
from . import array_manipulation
from . import ufuncs
from . import numpy_backport


@fix_biclass_wrapper
Expand Down Expand Up @@ -311,11 +311,11 @@ def put(a, ind, v, mode='raise'):
if indexes.size > values.size:
if values.size == 1:
# When 'values' is a scalar, we can broadcast it to match 'indexes'
values = as_strided(values, shape=indexes.shape, strides=(0,))
values = numpy_backport.as_strided(values, shape=indexes.shape, strides=(0,))
else: # else we repeat 'values' enough times to be larger than 'indexes'
values = as_strided(values,
shape=(indexes.size // values.size + 2, values.size),
strides=(0, values.itemsize))
values = numpy_backport.as_strided(values,
shape=(indexes.size // values.size + 2, values.size),
strides=(0, values.itemsize))
values = array_manipulation.flatten(values, always_copy=False)

# When 'values' is too large, we simple cut the end off
Expand Down
6 changes: 3 additions & 3 deletions bridge/npbackend/bohrium/signal.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,13 @@
"""
import numpy_force as numpy
from numpy_force.lib.stride_tricks import as_strided
from . import array_create
from . import bhary
from . import ufuncs
from . import linalg
from . import summations
from . import _util
from . import numpy_backport


# 1d
Expand All @@ -34,8 +34,8 @@ def _correlate_and_convolve_body(vector, filter, d, mode):
padded[0:filter.size - 1] = 0
padded[filter.size - 1:vector.size + filter.size - 1] = vector
padded[vector.size + filter.size - 1:] = 0
s = as_strided(padded, shape=(padded.shape[0] - filter.size + 1, filter.size),
strides=(padded.strides[0], padded.strides[0]))
s = numpy_backport.as_strided(padded, shape=(padded.shape[0] - filter.size + 1, filter.size),
strides=(padded.strides[0], padded.strides[0]))
result = linalg.dot(s, filter)
if mode == 'same':
return result[d:vector.size + d]
Expand Down
3 changes: 2 additions & 1 deletion bridge/npbackend/bohrium/target/target_numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
"""
from .. import bhc
from .._util import dtype_name
from .. import numpy_backport
import numpy as np
import mmap
import time
Expand Down Expand Up @@ -53,7 +54,7 @@ class View(interface.View):
def __init__(self, ndim, start, shape, strides, base):
super(View, self).__init__(ndim, start, shape, strides, base)
buf = np.frombuffer(self.base.mmap, dtype=self.dtype, offset=self.start)
self.ndarray = np.lib.stride_tricks.as_strided(buf, shape, self.strides)
self.ndarray = numpy_backport.as_strided(buf, shape, self.strides)


def views2numpy(views):
Expand Down

0 comments on commit 0a4f92d

Please sign in to comment.