-
-
Notifications
You must be signed in to change notification settings - Fork 161
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: support NEW srp auth in
ipsw download dev
cmd
- Loading branch information
Showing
3 changed files
with
895 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
// prime.go - Generate safe primes | ||
// | ||
// Copyright 2013-2017 Sudhi Herle <sudhi.herle-at-gmail-dot-com> | ||
// License: MIT | ||
|
||
package srp | ||
|
||
/* UPDATED TO WORK WITH APPLE'S SRP IMPLEMENTATION by blacktop */ | ||
|
||
import ( | ||
"crypto/rand" | ||
"math/big" | ||
) | ||
|
||
// safePrime generates a safe prime; i.e., a prime 'p' such that 2p+1 is also prime. | ||
func safePrime(bits int) (*big.Int, error) { | ||
|
||
a := new(big.Int) | ||
for { | ||
p, err := rand.Prime(rand.Reader, bits) | ||
if err != nil { | ||
return nil, err | ||
} | ||
|
||
// 2p+1 | ||
a = a.Lsh(p, 1) | ||
a = a.Add(a, one) | ||
if a.ProbablyPrime(20) { | ||
return a, nil | ||
} | ||
} | ||
|
||
// never reached | ||
return nil, nil | ||
} | ||
|
||
// Return true if g is a generator for safe prime p | ||
// | ||
// From Cryptography Theory & Practive, Stinson and Paterson (Th. 6.8 pp 196): | ||
// | ||
// If p > 2 is a prime and g is in Zp*, then | ||
// g is a primitive element modulo p iff g ^ (p-1)/q != 1 (mod p) | ||
// for all primes q such that q divides (p-1). | ||
// | ||
// "Primitive Element" and "Generator" are the same thing in Number Theory. | ||
// | ||
// Code below added as a result of bug pointed out by Dharmalingam G. (May 2019) | ||
func isGenerator(g, p *big.Int) bool { | ||
p1 := big.NewInt(0).Sub(p, one) | ||
q := big.NewInt(0).Rsh(p1, 1) // q = p-1/2 = ((p-1) >> 1) | ||
|
||
// p is a safe prime. i.e., it is of the form 2q+1 where q is prime. | ||
// | ||
// => p-1 = 2q, where q is a prime. | ||
// | ||
// All factors of p-1 are: {2, q, 2q} | ||
// | ||
// So, our check really comes down to: | ||
// 1) g ^ (p-1/2q) != 1 mod p | ||
// => g ^ (2q/2q) != 1 mod p | ||
// => g != 1 mod p | ||
// Trivial case. We ignore this. | ||
// | ||
// 2) g ^ (p-1/2) != 1 mod p | ||
// => g ^ (2q/2) != 1 mod p | ||
// => g ^ q != 1 mod p | ||
// | ||
// 3) g ^ (p-1/q) != 1 mod p | ||
// => g ^ (2q/q) != 1 mod p | ||
// => g ^ 2 != 1 mod p | ||
// | ||
|
||
// g ^ 2 mod p | ||
if !ok(g, big.NewInt(0).Lsh(one, 1), p) { | ||
return false | ||
} | ||
|
||
// g ^ q mod p | ||
if !ok(g, q, p) { | ||
return false | ||
} | ||
|
||
return true | ||
} | ||
|
||
func ok(g, x *big.Int, p *big.Int) bool { | ||
z := big.NewInt(0).Exp(g, x, p) | ||
// the expmod should NOT be 1 | ||
return z.Cmp(one) != 0 | ||
} | ||
|
||
// vim: noexpandtab:sw=8:ts=8:tw=92: |
Oops, something went wrong.