Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: freq undefined when scale set for some tables #164

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions R/table.Distributions.R
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,8 @@ function (R, scale = NA, digits = 4)

#set up frequency
if(is.na(scale)) {
freq = periodicity(y)
freq = periodicity(R)
name <- paste0(freq$scale," Std Dev")
switch(freq$scale,
minute = {stop("Data periodicity too high")},
hourly = {stop("Data periodicity too high")},
Expand All @@ -52,13 +53,15 @@ function (R, scale = NA, digits = 4)
quarterly = {scale = 4},
yearly = {scale = 1}
)
} else {
name <- paste0("Std Dev")
}

# for each column, do the following:
for(column in 1:columns) {
z = c(StdDev.annualized(y[,column,drop=FALSE])/sqrt(scale), skewness(y[,column,drop=FALSE], method = "moment"), kurtosis(y[,column,drop=FALSE], method = "moment"), kurtosis(y[,column,drop=FALSE], method = "excess"), skewness(y[,column,drop=FALSE], method = "sample"), kurtosis(y[,column,drop=FALSE], method = "sample_excess"))

znames = c(paste(freq$scale," Std Dev"), "Skewness", "Kurtosis", "Excess kurtosis", "Sample skewness", "Sample excess kurtosis")
znames = c(name, "Skewness", "Kurtosis", "Excess kurtosis", "Sample skewness", "Sample excess kurtosis")


if(column == 1) {
Expand Down
5 changes: 4 additions & 1 deletion R/table.DownsideRiskRatio.R
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ function (R, MAR = 0, scale = NA, digits = 4)
#set up frequency
if(is.na(scale)) {
freq = periodicity(R)
name <- paste0(freq$scale," downside risk")
switch(freq$scale,
minute = {stop("Data periodicity too high")},
hourly = {stop("Data periodicity too high")},
Expand All @@ -55,13 +56,15 @@ function (R, MAR = 0, scale = NA, digits = 4)
quarterly = {scale = 4},
yearly = {scale = 1}
)
} else {
name <- paste0("downside risk")
}

# for each column, do the following:
for(column in 1:columns) {
z = c(DownsideDeviation(y[,column,drop=FALSE], MAR = MAR), DownsideDeviation(y[,column,drop=FALSE], MAR = MAR)*sqrt(scale), DownsidePotential(y[,column,drop=FALSE], MAR = MAR), UpsideRisk(y[,column,drop=FALSE], MAR = MAR, stat = "potential")/DownsidePotential(y[,column,drop=FALSE], MAR = MAR), SortinoRatio(y[,column,drop=FALSE], MAR = MAR), UpsideRisk(y[,column,drop=FALSE], MAR = MAR, stat = "potential"), UpsidePotentialRatio(y[,column,drop=FALSE], MAR = MAR), OmegaSharpeRatio(y[,column,drop=FALSE], MAR = MAR))

znames = c(paste0(freq$scale," downside risk"), "Annualised downside risk", "Downside potential", "Omega", "Sortino ratio", "Upside potential", "Upside potential ratio", "Omega-sharpe ratio")
znames = c(name, "Annualised downside risk", "Downside potential", "Omega", "Sortino ratio", "Upside potential", "Upside potential ratio", "Omega-sharpe ratio")
if(column == 1) {
resultingtable = data.frame(Value = z, row.names = znames)
}
Expand Down
5 changes: 4 additions & 1 deletion R/table.Variability.R
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ function (R, scale = NA, geometric = TRUE, digits = 4)
#set up frequency
if(is.na(scale)) {
freq = periodicity(R)
name <- paste0(freq$scale," Std Dev")
switch(freq$scale,
minute = {stop("Data periodicity too high")},
hourly = {stop("Data periodicity too high")},
Expand All @@ -55,13 +56,15 @@ function (R, scale = NA, geometric = TRUE, digits = 4)
quarterly = {scale = 4},
yearly = {scale = 1}
)
} else {
name <- paste0("Std Dev")
}

# for each column, do the following:
for(column in 1:columns) {
z = c(MeanAbsoluteDeviation(y[,column,drop=FALSE]), StdDev.annualized(y[,column,drop=FALSE], scale = scale)/sqrt(scale), StdDev.annualized(y[,column,drop=FALSE], scale = scale))

znames = c("Mean Absolute deviation", paste0(freq$scale," Std Dev"), "Annualized Std Dev")
znames = c("Mean Absolute deviation", name, "Annualized Std Dev")


if(column == 1) {
Expand Down