-
Notifications
You must be signed in to change notification settings - Fork 455
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- uses rife algorithm to interpolate frames
- Loading branch information
1 parent
bb2dd45
commit 20da2a2
Showing
9 changed files
with
1,060 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
227 changes: 227 additions & 0 deletions
227
imaginairy/enhancers/video_interpolation/rife/IFNet_HDv3.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from .warplayer import warp | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
|
||
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | ||
return nn.Sequential( | ||
nn.Conv2d( | ||
in_planes, | ||
out_planes, | ||
kernel_size=kernel_size, | ||
stride=stride, | ||
padding=padding, | ||
dilation=dilation, | ||
bias=True, | ||
), | ||
nn.LeakyReLU(0.2, True), | ||
) | ||
|
||
|
||
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | ||
return nn.Sequential( | ||
nn.Conv2d( | ||
in_planes, | ||
out_planes, | ||
kernel_size=kernel_size, | ||
stride=stride, | ||
padding=padding, | ||
dilation=dilation, | ||
bias=False, | ||
), | ||
nn.BatchNorm2d(out_planes), | ||
nn.LeakyReLU(0.2, True), | ||
) | ||
|
||
|
||
class Head(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.cnn0 = nn.Conv2d(3, 32, 3, 2, 1) | ||
self.cnn1 = nn.Conv2d(32, 32, 3, 1, 1) | ||
self.cnn2 = nn.Conv2d(32, 32, 3, 1, 1) | ||
self.cnn3 = nn.ConvTranspose2d(32, 8, 4, 2, 1) | ||
self.relu = nn.LeakyReLU(0.2, True) | ||
|
||
def forward(self, x, feat=False): | ||
x0 = self.cnn0(x) | ||
x = self.relu(x0) | ||
x1 = self.cnn1(x) | ||
x = self.relu(x1) | ||
x2 = self.cnn2(x) | ||
x = self.relu(x2) | ||
x3 = self.cnn3(x) | ||
if feat: | ||
return [x0, x1, x2, x3] | ||
return x3 | ||
|
||
|
||
class ResConv(nn.Module): | ||
def __init__(self, c, dilation=1): | ||
super().__init__() | ||
self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1) | ||
self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True) | ||
self.relu = nn.LeakyReLU(0.2, True) | ||
|
||
def forward(self, x): | ||
return self.relu(self.conv(x) * self.beta + x) | ||
|
||
|
||
class IFBlock(nn.Module): | ||
def __init__(self, in_planes, c=64): | ||
super().__init__() | ||
self.conv0 = nn.Sequential( | ||
conv(in_planes, c // 2, 3, 2, 1), | ||
conv(c // 2, c, 3, 2, 1), | ||
) | ||
self.convblock = nn.Sequential( | ||
ResConv(c), | ||
ResConv(c), | ||
ResConv(c), | ||
ResConv(c), | ||
ResConv(c), | ||
ResConv(c), | ||
ResConv(c), | ||
ResConv(c), | ||
) | ||
self.lastconv = nn.Sequential( | ||
nn.ConvTranspose2d(c, 4 * 6, 4, 2, 1), nn.PixelShuffle(2) | ||
) | ||
|
||
def forward(self, x, flow=None, scale=1): | ||
x = F.interpolate( | ||
x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False | ||
) | ||
if flow is not None: | ||
flow = ( | ||
F.interpolate( | ||
flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False | ||
) | ||
* 1.0 | ||
/ scale | ||
) | ||
x = torch.cat((x, flow), 1) | ||
feat = self.conv0(x) | ||
feat = self.convblock(feat) | ||
tmp = self.lastconv(feat) | ||
tmp = F.interpolate( | ||
tmp, scale_factor=scale, mode="bilinear", align_corners=False | ||
) | ||
flow = tmp[:, :4] * scale | ||
mask = tmp[:, 4:5] | ||
return flow, mask | ||
|
||
|
||
class IFNet(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.block0 = IFBlock(7 + 16, c=192) | ||
self.block1 = IFBlock(8 + 4 + 16, c=128) | ||
self.block2 = IFBlock(8 + 4 + 16, c=96) | ||
self.block3 = IFBlock(8 + 4 + 16, c=64) | ||
self.encode = Head() | ||
# self.contextnet = Contextnet() | ||
# self.unet = Unet() | ||
|
||
def forward( | ||
self, | ||
x, | ||
timestep=0.5, | ||
scale_list=[8, 4, 2, 1], | ||
training=False, | ||
fastmode=True, | ||
ensemble=False, | ||
): | ||
if training is False: | ||
channel = x.shape[1] // 2 | ||
img0 = x[:, :channel] | ||
img1 = x[:, channel:] | ||
if not torch.is_tensor(timestep): | ||
timestep = (x[:, :1].clone() * 0 + 1) * timestep | ||
else: | ||
timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3]) | ||
f0 = self.encode(img0[:, :3]) | ||
f1 = self.encode(img1[:, :3]) | ||
flow_list = [] | ||
merged = [] | ||
mask_list = [] | ||
warped_img0 = img0 | ||
warped_img1 = img1 | ||
flow = None | ||
mask = None | ||
block = [self.block0, self.block1, self.block2, self.block3] | ||
for i in range(4): | ||
if flow is None: | ||
flow, mask = block[i]( | ||
torch.cat((img0[:, :3], img1[:, :3], f0, f1, timestep), 1), | ||
None, | ||
scale=scale_list[i], | ||
) | ||
if ensemble: | ||
f_, m_ = block[i]( | ||
torch.cat((img1[:, :3], img0[:, :3], f1, f0, 1 - timestep), 1), | ||
None, | ||
scale=scale_list[i], | ||
) | ||
flow = (flow + torch.cat((f_[:, 2:4], f_[:, :2]), 1)) / 2 | ||
mask = (mask + (-m_)) / 2 | ||
else: | ||
wf0 = warp(f0, flow[:, :2]) | ||
wf1 = warp(f1, flow[:, 2:4]) | ||
fd, m0 = block[i]( | ||
torch.cat( | ||
( | ||
warped_img0[:, :3], | ||
warped_img1[:, :3], | ||
wf0, | ||
wf1, | ||
timestep, | ||
mask, | ||
), | ||
1, | ||
), | ||
flow, | ||
scale=scale_list[i], | ||
) | ||
if ensemble: | ||
f_, m_ = block[i]( | ||
torch.cat( | ||
( | ||
warped_img1[:, :3], | ||
warped_img0[:, :3], | ||
wf1, | ||
wf0, | ||
1 - timestep, | ||
-mask, | ||
), | ||
1, | ||
), | ||
torch.cat((flow[:, 2:4], flow[:, :2]), 1), | ||
scale=scale_list[i], | ||
) | ||
fd = (fd + torch.cat((f_[:, 2:4], f_[:, :2]), 1)) / 2 | ||
mask = (m0 + (-m_)) / 2 | ||
else: | ||
mask = m0 | ||
flow = flow + fd | ||
mask_list.append(mask) | ||
flow_list.append(flow) | ||
warped_img0 = warp(img0, flow[:, :2]) | ||
warped_img1 = warp(img1, flow[:, 2:4]) | ||
merged.append((warped_img0, warped_img1)) | ||
mask = torch.sigmoid(mask) | ||
merged[3] = warped_img0 * mask + warped_img1 * (1 - mask) | ||
if not fastmode: | ||
print("contextnet is removed") | ||
""" | ||
c0 = self.contextnet(img0, flow[:, :2]) | ||
c1 = self.contextnet(img1, flow[:, 2:4]) | ||
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) | ||
res = tmp[:, :3] * 2 - 1 | ||
merged[3] = torch.clamp(merged[3] + res, 0, 1) | ||
""" | ||
return flow_list, mask_list[3], merged |
50 changes: 50 additions & 0 deletions
50
imaginairy/enhancers/video_interpolation/rife/RIFE_HDv3.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import torch | ||
|
||
from .IFNet_HDv3 import IFNet | ||
|
||
|
||
class Model: | ||
def __init__(self): | ||
self.flownet = IFNet() | ||
self.version: float | ||
|
||
def eval(self): | ||
self.flownet.eval() | ||
|
||
def load_model(self, path, version: float): | ||
from safetensors import safe_open | ||
|
||
tensors = {} | ||
with safe_open(path, framework="pt") as f: # type: ignore | ||
for key in f.keys(): # noqa | ||
tensors[key] = f.get_tensor(key) | ||
self.flownet.load_state_dict(tensors, assign=True) | ||
self.version = version | ||
|
||
def load_model_old(self, path, rank=0): | ||
def convert(param): | ||
if rank == -1: | ||
return { | ||
k.replace("module.", ""): v | ||
for k, v in param.items() | ||
if "module." in k | ||
} | ||
else: | ||
return param | ||
|
||
if rank <= 0: | ||
if torch.cuda.is_available(): | ||
self.flownet.load_state_dict( | ||
convert(torch.load(f"{path}/flownet.pkl")), False | ||
) | ||
else: | ||
self.flownet.load_state_dict( | ||
convert(torch.load(f"{path}/flownet.pkl", map_location="cpu")), | ||
False, | ||
) | ||
|
||
def inference(self, img0, img1, timestep=0.5, scale=1.0): | ||
imgs = torch.cat((img0, img1), 1) | ||
scale_list = [8 / scale, 4 / scale, 2 / scale, 1 / scale] | ||
flow, mask, merged = self.flownet(imgs, timestep, scale_list) | ||
return merged[3] |
Empty file.
Oops, something went wrong.