An R
package for fitting Generalized Latent Variable Models for Location,
Scale, and Shape parameters (GLVM-LSS, Cárdenas-Hurtado et al., 2025+).
The GLVM-LSS framework extends traditional latent variable models (LVMs) by allowing distributional parameters beyond the mean (such as variance, skewness, and kurtosis) to be functions of latent variables.
Consider the following LVM:
where:
-
$$\mathbf{y} = (y_1, ... , y_p)^\top \in \mathbb{R}^p$$ are the observed variables, -
$$\mathbf{z} = (z_1, ... , z_q)^\top \in \mathbb{R}^q$$ are latent variables with distribution$$p(\mathbf{z}; \Phi) \sim \mathbb{N}(0,\Phi)$$ , where$$\Phi$$ is a covariance matrix, -
$$\mathbf{\theta}_i = (\mu_i, \sigma_i, \tau_i, \nu_i)^\top$$ is a vector of distributional parameters -- location$$\mu_i$$ , scale$$\sigma_i$$ , and shape$$(\tau_i,\nu_i)$$ -- for item$$i$$ , characterizing the conditional distribution$$f_i(y_i \mid \mathbf{z}; \mathbf{\theta}_i)$$ .
In the GLVM-LSS framework, an arbitrary distributional parameter
The link function (
By expressing the distributional parameters characterizing each
Current implementation of the glvmlss
package allows for mixed data following Normal, Bernoulli, Beta, and Skew-Normal distributions.
You can install the released version of glvmlss
from CRAN with:
install.packages("glvmlss")
And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("ccardehu/glvmlss")
- Cárdenas-Hurtado, C., Moustaki, I., Chen, Y., & Marra, G. (2024). “Generalized Latent Variable Models for Location, Scale, and Shape parameters”.