forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d56691a
commit 69072c1
Showing
1 changed file
with
387 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,387 @@ | ||
/*************************************************************************************************** | ||
* Copyright (c) 2024 - 2024 Codeplay Software Ltd. All rights reserved. | ||
* SPDX-License-Identifier: BSD-3-Clause | ||
* | ||
* Redistribution and use in source and binary forms, with or without | ||
* modification, are permitted provided that the following conditions are met: | ||
* | ||
* 1. Redistributions of source code must retain the above copyright notice, this | ||
* list of conditions and the following disclaimer. | ||
* | ||
* 2. Redistributions in binary form must reproduce the above copyright notice, | ||
* this list of conditions and the following disclaimer in the documentation | ||
* and/or other materials provided with the distribution. | ||
* | ||
* 3. Neither the name of the copyright holder nor the names of its | ||
* contributors may be used to endorse or promote products derived from | ||
* this software without specific prior written permission. | ||
* | ||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
* | ||
**************************************************************************************************/ | ||
|
||
#include "cutlass/gemm/device/gemm.h" | ||
#include "cutlass/epilogue/collective/default_epilogue.hpp" | ||
#include "cutlass/gemm/device/gemm_universal.h" | ||
#include "cutlass/gemm/device/gemm_universal_adapter.h" | ||
#include "cutlass/gemm/collective/collective_mma.hpp" | ||
#include "cutlass/util/GPU_Clock.hpp" | ||
|
||
#include "cutlass/util/host_tensor.h" | ||
#include "cutlass/util/reference/host/tensor_compare.h" | ||
#include "cutlass/util/reference/host/tensor_copy.h" | ||
#include "cutlass/util/reference/host/tensor_fill.h" | ||
#include "cute/tensor.hpp" | ||
|
||
#include "cutlass/util/command_line.h" | ||
#include "cutlass/util/device_memory.h" | ||
#include "cutlass/util/packed_stride.hpp" | ||
#include "cutlass/util/reference/device/gemm_complex.h" | ||
#include "cutlass/util/reference/device/tensor_compare.h" | ||
#include "cutlass/util/print_error.hpp" | ||
|
||
template <typename T> | ||
static void fill_matrix(std::vector<T> &M) | ||
{ | ||
std::generate(std::begin(M), std::end(M), [&] | ||
{ return static_cast<T>( 2*(rand() / double(RAND_MAX)) - 1 ); }); | ||
} | ||
|
||
using namespace cute; | ||
|
||
/////////////////////////////////////////////////////////////////////////////////////////////////// | ||
|
||
// Command line options parsing | ||
struct Options { | ||
|
||
bool help; | ||
bool error; | ||
|
||
int m, n, k, l, iterations; | ||
float alpha, beta; | ||
|
||
Options(): | ||
help(false), | ||
error(false), | ||
m(4096), n(4096), k(4096), l(1), iterations(100), | ||
alpha(1.f), beta(0.f) | ||
{ } | ||
|
||
// Parses the command line | ||
void parse(int argc, char const **args) { | ||
cutlass::CommandLine cmd(argc, args); | ||
|
||
if (cmd.check_cmd_line_flag("help")) { | ||
help = true; | ||
return; | ||
} | ||
|
||
cmd.get_cmd_line_argument("m", m, 4096); | ||
cmd.get_cmd_line_argument("n", n, 4096); | ||
cmd.get_cmd_line_argument("k", k, 4096); | ||
cmd.get_cmd_line_argument("l", l, 1); | ||
cmd.get_cmd_line_argument("alpha", alpha, 1.f); | ||
cmd.get_cmd_line_argument("beta", beta, 0.f); | ||
cmd.get_cmd_line_argument("iterations", iterations, 100); | ||
} | ||
|
||
/// Prints the usage statement. | ||
std::ostream & print_usage(std::ostream &out) const { | ||
|
||
out << "PVC GEMM Example\n\n" | ||
<< "Options:\n\n" | ||
<< " --help If specified, displays this usage statement\n\n" | ||
<< " --m=<int> Sets the M extent of the GEMM\n" | ||
<< " --n=<int> Sets the N extent of the GEMM\n" | ||
<< " --k=<int> Sets the K extent of the GEMM\n" | ||
<< " --l=<int> Sets the L extent (batch count) of the GEMM\n" | ||
<< " --alpha=<s32> Epilogue scalar alpha\n" | ||
<< " --beta=<s32> Epilogue scalar beta\n\n" | ||
<< " --iterations=<int> Iterations\n\n"; | ||
|
||
return out; | ||
} | ||
}; | ||
|
||
/////////////////////////////////////////////////////////////////////////////////////////////////// | ||
|
||
template <class Gemm> | ||
struct ExampleRunner { | ||
|
||
using StrideA = typename Gemm::GemmKernel::StrideA; | ||
using StrideB = typename Gemm::GemmKernel::StrideB; | ||
using StrideC = typename Gemm::GemmKernel::StrideC; | ||
using StrideD = typename Gemm::GemmKernel::StrideD; | ||
|
||
using LayoutA = typename Gemm::LayoutA; | ||
using LayoutB = typename Gemm::LayoutB; | ||
using LayoutC = typename Gemm::LayoutC; | ||
using LayoutD = typename Gemm::LayoutD; | ||
|
||
using ElementA = typename Gemm::ElementA; | ||
using ElementB = typename Gemm::ElementB; | ||
using ElementAcc = typename Gemm::ElementAccumulator; | ||
|
||
using CollectiveEpilogue = typename Gemm::CollectiveEpilogue; | ||
using ElementC = typename Gemm::ElementC; | ||
using ElementOutput = typename CollectiveEpilogue::ElementOutput; | ||
using ElementCompute = typename CollectiveEpilogue::ElementCompute; | ||
using ElementAccumulator = typename CollectiveEpilogue::ElementAccumulator; | ||
|
||
using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape; | ||
|
||
// | ||
// Data members | ||
// | ||
|
||
/// Initialization | ||
StrideA stride_A; | ||
StrideB stride_B; | ||
StrideC stride_C; | ||
StrideD stride_D; | ||
|
||
cutlass::DeviceAllocation<ElementA> block_A; | ||
cutlass::DeviceAllocation<ElementB> block_B; | ||
cutlass::DeviceAllocation<ElementC> block_C; | ||
cutlass::DeviceAllocation<ElementOutput> block_D; | ||
cutlass::DeviceAllocation<ElementOutput> block_ref_D; | ||
|
||
// | ||
// Methods | ||
// | ||
|
||
bool verify(const ProblemShapeType& problem_size, ElementCompute alpha, ElementCompute beta) { | ||
auto [M, N, K, L] = problem_size; | ||
|
||
cutlass::TensorRef ref_A(block_A.get(), LayoutA::packed({M, K})); | ||
cutlass::TensorRef ref_B(block_B.get(), LayoutB::packed({K, N})); | ||
cutlass::TensorRef ref_C(block_C.get(), LayoutC::packed({M, N})); | ||
cutlass::TensorRef ref_D(block_ref_D.get(), LayoutD::packed({M, N})); | ||
|
||
cutlass::reference::device::GemmComplex( | ||
{M, N, K}, | ||
alpha, | ||
ref_A, | ||
cutlass::ComplexTransform::kNone, | ||
ref_B, | ||
cutlass::ComplexTransform::kNone, | ||
beta, | ||
ref_C, | ||
ref_D, | ||
ElementAccumulator(0), | ||
L, // batch_count | ||
M * K, // batch_stride_A | ||
K * N, // batch_stride_B | ||
M * N, // batch_stride_C | ||
M * N // batch_stride_D | ||
); | ||
|
||
#if defined(CUTLASS_ENABLE_SYCL) | ||
syclcompat::wait(); | ||
#else | ||
cudaDeviceSynchronize(); | ||
#endif | ||
|
||
// Check if output from CUTLASS kernel and reference kernel are relatively equal or not | ||
// need to set a larger error margin for comparison to succeed | ||
auto epsilon = static_cast<ElementOutput>(0.1f); | ||
auto nonzero_floor = static_cast<ElementOutput>(0.1f); | ||
|
||
bool passed = cutlass::reference::device::BlockCompareRelativelyEqual( | ||
block_ref_D.get(), block_D.get(), block_D.size(), | ||
epsilon, nonzero_floor); | ||
|
||
return passed; | ||
} | ||
|
||
/// Initialize operands to be used in the GEMM and reference GEMM | ||
virtual void initialize(const ProblemShapeType& problem_size) { | ||
auto problem_shape_MNKL = cute::append<4>(problem_size, 1); | ||
auto [M, N, K, L] = problem_shape_MNKL; | ||
|
||
stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L)); | ||
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L)); | ||
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L)); | ||
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L)); | ||
|
||
block_A.reset(M * K * L); | ||
block_B.reset(K * N * L); | ||
block_C.reset(M * N * L); | ||
block_D.reset(M * N * L); | ||
block_ref_D.reset(M * N * L); | ||
|
||
// TODO: Enable initialization on device directly once RNG is | ||
// available through SYCL. | ||
std::vector<ElementA> a(K * M * L); | ||
std::vector<ElementB> b(K * N * L); | ||
std::vector<ElementC> c(M * N * L); | ||
std::vector<ElementC> d(M * N * L, ElementC{0}); | ||
|
||
fill_matrix(a); | ||
fill_matrix(b); | ||
fill_matrix(c); | ||
|
||
block_A.copy_from_host(a.data(), a.size()); | ||
block_B.copy_from_host(b.data(), b.size()); | ||
block_C.copy_from_host(c.data(), c.size()); | ||
block_D.copy_from_host(d.data(), d.size()); | ||
block_ref_D.copy_from_host(d.data(), d.size()); | ||
} | ||
|
||
virtual void run(const Options& options, const cutlass::KernelHardwareInfo& hw_info) { | ||
ProblemShapeType problem_size = ProblemShapeType{options.m, options.n, options.k, options.l}; | ||
|
||
initialize(problem_size); | ||
|
||
typename Gemm::GemmKernel::Arguments arguments{ | ||
cutlass::gemm::GemmUniversalMode::kGemm, | ||
problem_size, | ||
{block_A.get(), stride_A, block_B.get(), stride_B}, | ||
{{options.alpha, options.beta}, block_C.get(), stride_C, block_D.get(), stride_D}, | ||
hw_info | ||
}; | ||
|
||
Gemm gemm_op; | ||
|
||
size_t workspace_size = Gemm::get_workspace_size(arguments); | ||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); | ||
|
||
gemm_op.can_implement(arguments); | ||
|
||
gemm_op.initialize(arguments, workspace.get()); | ||
|
||
// Run the GEMM | ||
gemm_op.run(); | ||
|
||
#if defined(CUTLASS_ENABLE_SYCL) | ||
syclcompat::wait(); | ||
#else | ||
cudaDeviceSynchronize(); | ||
#endif | ||
|
||
// Verify that the result is correct | ||
bool passed = verify(problem_size, options.alpha, options.beta); | ||
std::cout << "Disposition: " << (passed ? "Passed" : "Failed") << std::endl; | ||
|
||
if (passed && options.iterations > 0) { | ||
GPU_Clock timer; | ||
timer.start(); | ||
for (int i = 0; i < options.iterations; ++i) { | ||
gemm_op.run(); | ||
} | ||
|
||
float cute_time = timer.seconds() / options.iterations; | ||
double tflops = (2.0 * options.m * options.n * options.k * options.l) * 1e-12; | ||
std::cout << "Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << 'x' << options.l | ||
<< std::endl; | ||
printf("Cutlass GEMM Performance: [%4.3f]TFlop/s (%6.4f)ms\n", tflops / cute_time, cute_time * 1000); | ||
} | ||
} | ||
}; | ||
|
||
template <class Gemm> | ||
struct PvcExampleRunner : ExampleRunner<Gemm> { | ||
using Base = ExampleRunner<Gemm>; | ||
|
||
using ElementB = typename Base::ElementB; | ||
|
||
using ProblemShapeType = typename Base::ProblemShapeType; | ||
|
||
cutlass::DeviceAllocation<ElementB> block_B_vnni; | ||
|
||
template <typename T> | ||
void vnni_matrix( | ||
T* dst, const T* src, | ||
int batch, int numRows, int numCols, int factor) | ||
{ | ||
for (int b = 0; b < batch; b++) { | ||
for (int r = 0; r < numRows / factor; r++) { | ||
for (int c = 0; c < numCols; c++) { | ||
for (int k = 0; k < factor; k++) { | ||
dst[((b * (numRows / factor) + r) * numCols + c) * factor + k] = | ||
src[((b * (numRows / factor) + r) * factor + k) * numCols + c]; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
void initialize(const ProblemShapeType& problem_size) override { | ||
Base::initialize(problem_size); | ||
|
||
auto problem_shape_MNKL = cute::append<4>(problem_size, 1); | ||
auto [M, N, K, L] = problem_shape_MNKL; | ||
|
||
block_B_vnni.reset(Base::block_B.size()); | ||
|
||
std::vector<ElementB> b(K * N * L); | ||
std::vector<ElementB> b_vnni(b.size()); | ||
|
||
Base::block_B.copy_to_host(b.data()); | ||
vnni_matrix(b_vnni.data(), b.data(), L, K, N, 2); | ||
|
||
block_B_vnni.copy_from_host(b_vnni.data()); | ||
} | ||
|
||
void run(const Options& options, const cutlass::KernelHardwareInfo& hw_info) override { | ||
ProblemShapeType problem_size = ProblemShapeType{options.m, options.n, options.k, options.l}; | ||
|
||
initialize(problem_size); | ||
|
||
typename Gemm::GemmKernel::Arguments arguments{ | ||
cutlass::gemm::GemmUniversalMode::kGemm, | ||
problem_size, | ||
{Base::block_A.get(), Base::stride_A, block_B_vnni.get(), Base::stride_B}, | ||
{ | ||
{options.alpha, options.beta}, | ||
Base::block_C.get(), Base::stride_C, Base::block_D.get(), Base::stride_D | ||
}, | ||
hw_info | ||
}; | ||
|
||
Gemm gemm_op; | ||
|
||
size_t workspace_size = Gemm::get_workspace_size(arguments); | ||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); | ||
|
||
gemm_op.can_implement(arguments); | ||
|
||
gemm_op.initialize(arguments, workspace.get()); | ||
|
||
// Run the GEMM | ||
gemm_op.run(); | ||
|
||
#if defined(CUTLASS_ENABLE_SYCL) | ||
syclcompat::wait(); | ||
#else | ||
cudaDeviceSynchronize(); | ||
#endif | ||
|
||
// Verify that the result is correct | ||
bool passed = Base::verify(problem_size, options.alpha, options.beta); | ||
std::cout << "Disposition: " << (passed ? "Passed" : "Failed") << std::endl; | ||
|
||
if (passed && options.iterations > 0) { | ||
GPU_Clock timer; | ||
timer.start(); | ||
for (int i = 0; i < options.iterations; ++i) { | ||
gemm_op.run(); | ||
} | ||
|
||
float cute_time = timer.seconds() / options.iterations; | ||
double tflops = (2.0 * options.m * options.n * options.k * options.l) * 1e-12; | ||
std::cout << "Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << 'x' << options.l << std::endl; | ||
printf("Cutlass GEMM Performance: [%4.3f]TFlop/s (%6.4f)ms\n", tflops / cute_time, cute_time*1000); | ||
} | ||
} | ||
}; | ||
|