Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Subgroup Level Bluestein Algorithm #145

Open
wants to merge 23 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
cef2ad0
subgroup level batch_interleaved and packed bluestein algorithm working
AD2605 Mar 8, 2024
8cc05db
resolve warnings and add backward and multi-dim subgroup level small …
AD2605 Mar 8, 2024
5237a37
further changes
AD2605 Mar 9, 2024
5292f41
modifier offset calculation bugfix
AD2605 Mar 11, 2024
a3aa5d6
initialize local memory with zeros to avoid nans
AD2605 Mar 12, 2024
5b89d10
format
AD2605 Mar 12, 2024
b0d1661
not copy in between an aligned pointer
AD2605 Mar 12, 2024
5afe834
prevent OOB read/writes in packed format
AD2605 Mar 12, 2024
8a83350
prevent OOB read writes in PACKED bluestein condition
AD2605 Mar 13, 2024
eb3291f
Merge remote-tracking branch 'origin/main' into atharva/sg_wg_bluestein
AD2605 Mar 13, 2024
011e780
refactor
AD2605 Mar 13, 2024
8c3b40b
bugfix after refactor
AD2605 Mar 13, 2024
20e3c78
doxygens and logging, and lower tolerance value
AD2605 Mar 14, 2024
ae929d3
remove unused shuffle_transpose function
AD2605 Mar 14, 2024
708893c
remove unused bluestein header from workgroup_dispatcher.hpp
AD2605 Mar 14, 2024
594d224
remove unused headers from subgroup.hpp
AD2605 Mar 14, 2024
5f1ab4d
add missing array header
AD2605 Mar 14, 2024
99d8cfb
slightly bump tolerance value for tests to pass on Nvidia
AD2605 Mar 14, 2024
243c793
format
AD2605 Mar 14, 2024
3a77953
review comments 1
AD2605 Mar 18, 2024
cfd2ab8
updated doxygens
AD2605 Mar 18, 2024
d0e705d
addressed missed comments from first round of review
AD2605 Mar 18, 2024
823b84f
prevent OOB read from global memory
AD2605 Mar 19, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
131 changes: 93 additions & 38 deletions src/portfft/committed_descriptor_impl.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
#include <vector>

#include "common/exceptions.hpp"
#include "common/subgroup.hpp"
#include "common/subgroup_ct.hpp"
#include "defines.hpp"
#include "enums.hpp"
#include "specialization_constant.hpp"
Expand Down Expand Up @@ -89,8 +89,8 @@ class committed_descriptor_impl {
Scalar1* output, const TIn& input_imag, Scalar1* output_imag, const Scalar1* twiddles_ptr,
const IdxGlobal* factors_triple, IdxGlobal intermediate_twiddle_offset, IdxGlobal subimpl_twiddle_offset,
IdxGlobal input_global_offset, IdxGlobal committed_size, Idx num_batches_in_l2, IdxGlobal n_transforms,
IdxGlobal batch_start, Idx factor_id, Idx total_factors, complex_storage storage,
const std::vector<sycl::event>& dependencies, sycl::queue& queue);
IdxGlobal batch_start, Idx total_factors, complex_storage storage, const std::vector<sycl::event>& dependencies,
sycl::queue& queue);

template <typename Scalar1, domain Domain1, typename TOut>
friend sycl::event detail::transpose_level(
Expand Down Expand Up @@ -148,18 +148,30 @@ class committed_descriptor_impl {
std::vector<kernel_data_struct> transpose_kernels;
std::shared_ptr<IdxGlobal> factors_and_scan;
detail::level level;
// The size of DFT transform which will be computed for the given dimension. Will be different from the
// committed_length when the Bluestein / Rader algorithms are used
std::size_t length;
// The committed length (as in the user specified length) for the particular dimension
std::size_t committed_length;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
std::size_t committed_length;
std::size_t padded_length;

The other lenght is also committed, making this variable name confusing.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I still think committed_length is confusing. How about ct_length (standing for Cooley-Tukey)?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

committed_length is not the cooley_tukey length. Committed length is the user provided length (i.e the length of the dimension as in the descriptor)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In that case the other one could be ct_length. We just need something to make it obvious which is which.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It cannot be ct_length, we should not be tying it with the name of an algorithm, as it isn't always cooley tukey.

I believe length, along with its description above should be suffiicient

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Which other algorithm can it be?

Idx used_sg_size;
Idx num_batches_in_l2;
Idx num_factors;
detail::fft_algorithm algorithm;

dimension_struct(std::vector<kernel_data_struct> forward_kernels, std::vector<kernel_data_struct> backward_kernels,
detail::level level, std::size_t length, Idx used_sg_size)
detail::level level, std::size_t length, std::size_t committed_length, Idx used_sg_size,
detail::fft_algorithm algorithm)
: forward_kernels(std::move(forward_kernels)),
backward_kernels(std::move(backward_kernels)),
level(level),
length(length),
used_sg_size(used_sg_size) {}
committed_length(committed_length),
used_sg_size(used_sg_size),
algorithm(algorithm) {
if (algorithm == detail::fft_algorithm::BLUESTEIN && level != detail::level::SUBGROUP) {
throw unsupported_configuration("Prime sizes that do not fit in the subgroup implementation are not supported");
}
}
};

std::vector<dimension_struct> dimensions;
Expand Down Expand Up @@ -203,12 +215,12 @@ class committed_descriptor_impl {
* set of kernels that need to be JIT compiled.
*
* @tparam SubgroupSize size of the subgroup
* @param kernel_num the consecutive number of the kernel to prepare
* @return implementation to use for the dimension and a vector of tuples of: implementation to use for a kernel,
* vector of kernel ids, factors
* @param fft_size The size for which kernel needs to be prepared
* @return implementation to use for the dimension and a vector of tuples of: implementation to use for a kernel, the
* size of the fft for which the implementation was prepared and the vector of kernel ids, factors
*/
template <Idx SubgroupSize>
std::tuple<detail::level, kernel_ids_and_metadata_t> prepare_implementation(std::size_t kernel_num) {
std::tuple<detail::level, std::size_t, kernel_ids_and_metadata_t> prepare_implementation(IdxGlobal fft_size) {
hjabird marked this conversation as resolved.
Show resolved Hide resolved
t4c1 marked this conversation as resolved.
Show resolved Hide resolved
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I do not think the change of parameter type to IdxGlobal makes sense here, as the function needs to cast it back to std::size_t anyway.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Its to avoid an additional casts inside prepare implementation, which currently works with IdxGlobal,
note that even previously we used to cast the size to IdxGlobal inside prepare implementation, instead this directly accepts an IdxGlobal

It returns a size_t because a lot of our calculation pertaining to that field works on size_t, hence returning size_t to avoid casts there

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We use std::size_t in public interface and IdxGlobal in kernels. Somewhere inbetween we need to cast from one type to another. I just think this should happen just once, without any casts back to std::size_t. I am not particularly attached to where that is.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The field length in the dimension_struct is stored as std::size_t, which is passed to other functions like num_scalars_in_local_mem, which accepts it as a size_t, hence that cast to size_t upon return.

we used to cast the fft_size to IdxGlobal inside the prepare_implementation here previously presumably to avoid warnings, and hence seeing that I simply made it accept IdxGlobal

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But that requires additional casts, which make code harder to read. Make it so that we only cast to IdxGlobal, not back.

PORTFFT_LOG_FUNCTION_ENTRY();
// TODO: check and support all the parameter values
if constexpr (Domain != domain::COMPLEX) {
Expand All @@ -217,11 +229,12 @@ class committed_descriptor_impl {

std::vector<sycl::kernel_id> ids;
std::vector<Idx> factors;
IdxGlobal fft_size = static_cast<IdxGlobal>(params.lengths[kernel_num]);
if (detail::fits_in_wi<Scalar>(fft_size)) {
ids = detail::get_ids<detail::workitem_kernel, Scalar, Domain, SubgroupSize>();
PORTFFT_LOG_TRACE("Prepared workitem impl for size: ", fft_size);
return {detail::level::WORKITEM, {{detail::level::WORKITEM, ids, factors}}};
return {detail::level::WORKITEM,
static_cast<std::size_t>(fft_size),
{{detail::level::WORKITEM, ids, {static_cast<Idx>(fft_size)}}}};
}
if (detail::fits_in_sg<Scalar>(fft_size, SubgroupSize)) {
Idx factor_sg = detail::factorize_sg(static_cast<Idx>(fft_size), SubgroupSize);
Expand All @@ -232,14 +245,11 @@ class committed_descriptor_impl {
factors.push_back(factor_sg);
ids = detail::get_ids<detail::subgroup_kernel, Scalar, Domain, SubgroupSize>();
PORTFFT_LOG_TRACE("Prepared subgroup impl with factor_wi:", factor_wi, "and factor_sg:", factor_sg);
return {detail::level::SUBGROUP, {{detail::level::SUBGROUP, ids, factors}}};
return {detail::level::SUBGROUP, static_cast<std::size_t>(fft_size), {{detail::level::SUBGROUP, ids, factors}}};
}
IdxGlobal n_idx_global = detail::factorize(fft_size);
if (detail::can_cast_safely<IdxGlobal, Idx>(n_idx_global) &&
detail::can_cast_safely<IdxGlobal, Idx>(fft_size / n_idx_global)) {
if (n_idx_global == 1) {
throw unsupported_configuration("FFT size ", fft_size, " : Large Prime sized FFT currently is unsupported");
}
Idx n = static_cast<Idx>(n_idx_global);
Idx m = static_cast<Idx>(fft_size / n_idx_global);
Idx factor_sg_n = detail::factorize_sg(n, SubgroupSize);
Expand All @@ -265,7 +275,8 @@ class committed_descriptor_impl {
ids = detail::get_ids<detail::workgroup_kernel, Scalar, Domain, SubgroupSize>();
PORTFFT_LOG_TRACE("Prepared workgroup impl with factor_wi_n:", factor_wi_n, " factor_sg_n:", factor_sg_n,
" factor_wi_m:", factor_wi_m, " factor_sg_m:", factor_sg_m);
return {detail::level::WORKGROUP, {{detail::level::WORKGROUP, ids, factors}}};
return {
detail::level::WORKGROUP, static_cast<std::size_t>(fft_size), {{detail::level::WORKGROUP, ids, factors}}};
}
}
PORTFFT_LOG_TRACE("Preparing global impl");
Expand All @@ -286,12 +297,10 @@ class committed_descriptor_impl {
if (detail::can_cast_safely<IdxGlobal, Idx>(factor_sg) && detail::can_cast_safely<IdxGlobal, Idx>(factor_wi)) {
std::size_t input_scalars =
num_scalars_in_local_mem(detail::level::SUBGROUP, static_cast<std::size_t>(factor_size), SubgroupSize,
{static_cast<Idx>(factor_sg), static_cast<Idx>(factor_wi)}, temp_num_sgs_in_wg,
{static_cast<Idx>(factor_wi), static_cast<Idx>(factor_sg)}, temp_num_sgs_in_wg,
hjabird marked this conversation as resolved.
Show resolved Hide resolved
batch_interleaved_layout ? layout::BATCH_INTERLEAVED : layout::PACKED);
std::size_t store_modifiers = batch_interleaved_layout ? input_scalars : 0;
std::size_t twiddle_scalars = 2 * static_cast<std::size_t>(factor_size);
return (sizeof(Scalar) * (input_scalars + store_modifiers + twiddle_scalars)) <
static_cast<std::size_t>(local_memory_size);
return (sizeof(Scalar) * (input_scalars + twiddle_scalars)) <= static_cast<std::size_t>(local_memory_size);
hjabird marked this conversation as resolved.
Show resolved Hide resolved
t4c1 marked this conversation as resolved.
Show resolved Hide resolved
}
return false;
}();
Expand All @@ -303,13 +312,17 @@ class committed_descriptor_impl {
"and factor_sg:", factor_sg);
param_vec.emplace_back(detail::level::SUBGROUP,
detail::get_ids<detail::global_kernel, Scalar, Domain, SubgroupSize>(),
std::vector<Idx>{factor_sg, factor_wi});
std::vector<Idx>{factor_wi, factor_sg});
return true;
}
return false;
};
detail::factorize_input(fft_size, check_and_select_target_level);
return {detail::level::GLOBAL, param_vec};
bool encountered_large_prime = detail::factorize_input(fft_size, check_and_select_target_level);
if (encountered_large_prime) {
IdxGlobal padded_size = detail::get_bluestein_padded_size(fft_size);
return prepare_implementation<SubgroupSize>(padded_size);
}
return {detail::level::GLOBAL, static_cast<std::size_t>(fft_size), param_vec};
}

/**
Expand Down Expand Up @@ -463,6 +476,7 @@ class committed_descriptor_impl {
const bool is_global = top_level == detail::level::GLOBAL;
const bool is_final_factor = counter == (prepared_vec.size() - 1);
const bool is_final_dim = dimension_num == (params.lengths.size() - 1);
const Idx factor_size = std::accumulate(factors.begin(), factors.end(), 1, std::multiplies<Idx>());
const bool is_backward = compute_direction == direction::BACKWARD;
if (is_multi_dim && is_global) {
throw unsupported_configuration("multidimensional global transforms are not supported.");
Expand All @@ -477,29 +491,26 @@ class committed_descriptor_impl {
const auto apply_scale = is_final_factor && is_final_dim ? detail::apply_scale_factor::APPLIED
: detail::apply_scale_factor::NOT_APPLIED;

Idx length{};
IdxGlobal forward_stride{};
IdxGlobal backward_stride{};
IdxGlobal forward_distance{};
IdxGlobal backward_distance{};

if (is_global) {
length = std::accumulate(factors.begin(), factors.end(), Idx(1), std::multiplies<Idx>());

remaining_factors_prod /= length;
remaining_factors_prod /= factor_size;
forward_stride = remaining_factors_prod;
backward_stride = remaining_factors_prod;
forward_distance = is_final_factor ? length : 1;
backward_distance = is_final_factor ? length : 1;
forward_distance = is_final_factor ? factor_size : 1;
backward_distance = is_final_factor ? factor_size : 1;

} else {
length = static_cast<Idx>(params.lengths[dimension_num]);
Idx committed_length = static_cast<Idx>(params.lengths[dimension_num]);
forward_stride = static_cast<IdxGlobal>(params.forward_strides[dimension_num]);
backward_stride = static_cast<IdxGlobal>(params.backward_strides[dimension_num]);
if (is_multi_dim) {
if (is_final_dim) {
forward_distance = length;
backward_distance = length;
forward_distance = committed_length;
backward_distance = committed_length;
} else {
forward_distance = 1;
backward_distance = 1;
Expand All @@ -517,14 +528,34 @@ class committed_descriptor_impl {

auto in_bundle = sycl::get_kernel_bundle<sycl::bundle_state::input>(queue.get_context(), ids);

set_spec_constants(top_level, in_bundle, length, factors, detail::elementwise_multiply::NOT_APPLIED,
if (factor_size != static_cast<Idx>(params.lengths[dimension_num]) && !is_global) {
in_bundle.template set_specialization_constant<detail::SpecConstFFTAlgorithm>(detail::fft_algorithm::BLUESTEIN);
t4c1 marked this conversation as resolved.
Show resolved Hide resolved
in_bundle.template set_specialization_constant<detail::SpecConstCommittedLength>(
static_cast<Idx>(params.lengths[dimension_num]));
} else {
// TODO: This needs to change in the case of global
if (is_global) {
in_bundle.template set_specialization_constant<detail::SpecConstCommittedLength>(
static_cast<Idx>(factor_size));
} else {
in_bundle.template set_specialization_constant<detail::SpecConstCommittedLength>(
static_cast<Idx>(params.lengths[dimension_num]));
}

in_bundle.template set_specialization_constant<detail::SpecConstFFTAlgorithm>(
detail::fft_algorithm::COOLEY_TUKEY);
}

set_spec_constants(top_level, in_bundle, factor_size, factors, detail::elementwise_multiply::NOT_APPLIED,
multiply_on_store, apply_scale, level, conjugate_on_load, conjugate_on_store, scale_factor,
input_stride, output_stride, input_distance, output_distance, static_cast<Idx>(counter),
static_cast<Idx>(prepared_vec.size()));
try {
PORTFFT_LOG_TRACE("Building kernel bundle with subgroup size", SubgroupSize);
result.emplace_back(sycl::build(in_bundle), factors, params.lengths[dimension_num], SubgroupSize,
PORTFFT_SGS_IN_WG, std::shared_ptr<Scalar>(), level);
result.emplace_back(
sycl::build(in_bundle), factors,
static_cast<std::size_t>(std::accumulate(factors.begin(), factors.end(), 1, std::multiplies<Idx>())),
SubgroupSize, PORTFFT_SGS_IN_WG, std::shared_ptr<Scalar>(), level);
PORTFFT_LOG_TRACE("Kernel bundle build complete.");
} catch (std::exception& e) {
PORTFFT_LOG_WARNING("Build for subgroup size", SubgroupSize, "failed with message:\n", e.what());
Expand All @@ -549,7 +580,8 @@ class committed_descriptor_impl {
dimension_struct build_w_spec_const(std::size_t dimension_num) {
PORTFFT_LOG_FUNCTION_ENTRY();
if (std::count(supported_sg_sizes.begin(), supported_sg_sizes.end(), SubgroupSize)) {
auto [top_level, prepared_vec] = prepare_implementation<SubgroupSize>(dimension_num);
auto [top_level, fft_size, prepared_vec] =
prepare_implementation<SubgroupSize>(static_cast<IdxGlobal>(params.lengths[dimension_num]));
bool is_compatible = true;
for (auto [level, ids, factors] : prepared_vec) {
is_compatible = is_compatible && sycl::is_compatible(ids, dev);
Expand All @@ -563,9 +595,23 @@ class committed_descriptor_impl {
set_spec_constants_driver<SubgroupSize>(top_level, prepared_vec, direction::FORWARD, dimension_num);
auto backward_kernels =
set_spec_constants_driver<SubgroupSize>(top_level, prepared_vec, direction::BACKWARD, dimension_num);
detail::fft_algorithm algorithm;
if (fft_size == params.lengths[dimension_num]) {
algorithm = detail::fft_algorithm::COOLEY_TUKEY;
} else if (fft_size > params.lengths[dimension_num]) {
algorithm = detail::fft_algorithm::BLUESTEIN;
} else {
throw internal_error("Invalid FFT size encountered while preparing the implementation");
}

if (forward_kernels.has_value() && backward_kernels.has_value()) {
return {forward_kernels.value(), backward_kernels.value(), top_level, params.lengths[dimension_num],
SubgroupSize};
return {forward_kernels.value(),
backward_kernels.value(),
top_level,
fft_size,
params.lengths[dimension_num],
SubgroupSize,
algorithm};
}
}
}
Expand Down Expand Up @@ -912,6 +958,15 @@ class committed_descriptor_impl {
const auto input_layout = detail::get_layout(params, compute_direction);
const auto output_layout = detail::get_layout(params, inv(compute_direction));

if (dimensions.back().algorithm == detail::fft_algorithm::BLUESTEIN) {
if (input_layout == detail::layout::UNPACKED || output_layout == detail::layout::UNPACKED) {
throw unsupported_configuration("Unsupported configuration for prime sized DFTs");
}
if (input_layout == detail::layout::PACKED && output_layout != detail::layout::PACKED) {
throw unsupported_configuration("Unsupported configuration for prime sized DFTs");
}
}

// currently multi-dimensional transforms are implemented just for default (PACKED) data layout
const bool multi_dim_supported = input_layout == detail::layout::PACKED && output_layout == detail::layout::PACKED;
if (n_dimensions != 1 && !multi_dim_supported) {
Expand Down
76 changes: 76 additions & 0 deletions src/portfft/common/bluestein.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
/***************************************************************************
*
* Copyright (C) Codeplay Software Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Codeplay's portFFT
*
**************************************************************************/

#ifndef PORTFFT_COMMON_BLUESTEIN_HPP
#define PORTFFT_COMMON_BLUESTEIN_HPP

#include "portfft/common/host_dft.hpp"
#include "portfft/defines.hpp"

#include <complex>
#include <sycl/sycl.hpp>

namespace portfft {
namespace detail {
/**
* Utility function to get the dft transform of the chirp signal
* @tparam T Scalar Type
* @param ptr Host Pointer containing the load/store modifiers.
* @param committed_size original problem size
* @param dimension_size padded size
*/
template <typename T>
void populate_fft_chirp_signal(T* ptr, std::size_t committed_size, std::size_t dimension_size) {
using complex_t = std::complex<T>;
std::vector<complex_t> chirp_signal(dimension_size, 0);
std::vector<complex_t> chirp_fft(dimension_size, 0);
for (std::size_t i = 0; i < committed_size; i++) {
double theta = M_PI * static_cast<double>(i * i) / static_cast<double>(committed_size);
chirp_signal[i] = complex_t(static_cast<T>(std::cos(theta)), static_cast<T>(std::sin(theta)));
}
std::size_t num_zeros = dimension_size - 2 * committed_size + 1;
for (std::size_t i = 1; i < committed_size; i++) {
chirp_signal[committed_size + num_zeros + i - 1] = chirp_signal[committed_size - i];
}
Comment on lines +50 to +51
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm confused by this. I thought the signal was just zero-padded?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Chirp signal is wrapped around before computing it's DFT , as in the convolution, both positive and negative index values are required

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Note that the chirp signal is the one which is convoluted with the input in the bluestein algorithm

host_cooley_tukey(chirp_signal.data(), chirp_fft.data(), dimension_size);
t4c1 marked this conversation as resolved.
Show resolved Hide resolved
std::memcpy(ptr, reinterpret_cast<T*>(chirp_fft.data()), 2 * dimension_size * sizeof(T));
t4c1 marked this conversation as resolved.
Show resolved Hide resolved
}

/**
* Populates input modifiers required for bluestein
* @tparam T Scalar Type
* @param ptr Host Pointer containing the load/store modifiers.
* @param committed_size committed problem length
* @param dimension_size padded dft length
*/
template <typename T>
void populate_bluestein_input_modifiers(T* ptr, std::size_t committed_size, std::size_t dimension_size) {
using complex_t = std::complex<T>;
std::vector<complex_t> scratch(dimension_size, 0);
for (std::size_t i = 0; i < committed_size; i++) {
double theta = -M_PI * static_cast<double>(i * i) / static_cast<double>(committed_size);
scratch[i] = complex_t(static_cast<T>(std::cos(theta)), static_cast<T>(std::sin(theta)));
}
std::memcpy(ptr, reinterpret_cast<T*>(scratch.data()), 2 * dimension_size * sizeof(T));
t4c1 marked this conversation as resolved.
Show resolved Hide resolved
}
} // namespace detail
} // namespace portfft

#endif
Loading
Loading