Skip to content

Commit

Permalink
Add odd-order 2.1.0
Browse files Browse the repository at this point in the history
  • Loading branch information
proux01 committed Jan 4, 2025
1 parent 16713b4 commit 02b08f0
Showing 1 changed file with 39 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
opam-version: "2.0"
maintainer: "Mathematical Components <[email protected]>"
homepage: "https://math-comp.github.io/math-comp/"
bug-reports: "Mathematical Components <[email protected]>"
dev-repo: "git+https://github.com/math-comp/odd-order"
license: "CeCILL-B"

build: [
[make "-j" "%{jobs}%"]
]
install: [ make "install" ]
depends: [
"coq-mathcomp-character" {>= "2.1.0" & < "2.4~"}
]
tags: [ "keyword:finite groups" "keyword:Feit Thompson theorem" "keyword:small scale reflection" "keyword:mathematical components" "keyword:odd order theorem" ]
authors: [ "Jeremy Avigad <>" "Andrea Asperti <>" "Stephane Le Roux <>" "Yves Bertot <>" "Laurence Rideau <>" "Enrico Tassi <>" "Ioana Pasca <>" "Georges Gonthier <>" "Sidi Ould Biha <>" "Cyril Cohen <>" "Francois Garillot <>" "Alexey Solovyev <>" "Russell O'Connor <>" "Laurent Théry <>" "Assia Mahboubi <>" ]
synopsis: "The formal proof of the Feit-Thompson theorem"
description: """
The formal proof of the Feit-Thompson theorem.

From mathcomp Require Import all_ssreflect all_fingroup all_solvable PFsection14.

Check Feit_Thompson.
: forall (gT : finGroupType) (G : {group gT}), odd #|G| -> solvable G

From mathcomp Require Import all_ssreflect all_fingroup
all_solvable stripped_odd_order_theorem.

Check stripped_Odd_Order.
: forall (T : Type) (mul : T -> T -> T) (one : T) (inv : T -> T)
(G : T -> Type) (n : natural),
group_axioms T mul one inv ->
group T mul one inv G ->
finite_of_order T G n -> odd n -> solvable_group T mul one inv G"""

url {
src: "https://github.com/math-comp/odd-order/archive/mathcomp-odd-order.2.1.0.tar.gz"
checksum: "sha256=2bc2f282a4b5712534cd8a6363dac472687ab67eedcc9bbee7d7f46ae748de9a"
}

0 comments on commit 02b08f0

Please sign in to comment.