forked from AlexsLemonade/OpenPBTA-analysis
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
4,635 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
## subset maf file | ||
library(tidyverse) | ||
|
||
## set directories | ||
root_dir <- rprojroot::find_root(rprojroot::has_dir(".git")) | ||
data_dir <- file.path(root_dir, "data", "v13") | ||
subset_dir <- file.path(root_dir, "analyses", "DMG_analysis", "subset") | ||
result_dir <- file.path(root_dir, "analyses", "DMG_analysis", "results") | ||
|
||
hist <- read_tsv(file.path(data_dir, "histologies.tsv")) | ||
selected_sample <- hist %>% | ||
filter(grepl(c("DMG"), molecular_subtype)) | ||
|
||
## subset genes of interests | ||
gene_of_interests <- c("H3-3A", "H3C2", "H3C3", "H3C14", | ||
"EGFR", "TP53", "ATRX", "NF1") | ||
|
||
tumor_only_maf <- data.table::fread( | ||
file.path(data_dir, "snv-mutect2-tumor-only-plus-hotspots.maf.tsv.gz"), | ||
data.table = FALSE) %>% | ||
filter(Tumor_Sample_Barcode %in% selected_sample$Kids_First_Biospecimen_ID, | ||
Hugo_Symbol %in% gene_of_interests) | ||
|
||
# Add tumor only to consensus MAF | ||
snv_consensus_hotspot_maf <- data.table::fread( | ||
file.path(data_dir, "snv-consensus-plus-hotspots.maf.tsv.gz"), | ||
data.table = FALSE) %>% | ||
filter(Tumor_Sample_Barcode %in% selected_sample$Kids_First_Biospecimen_ID, | ||
Hugo_Symbol %in% gene_of_interests) | ||
|
||
tumor_only_maf$PUBMED <- as.character(tumor_only_maf$PUBMED) | ||
tumor_only_maf$PHENO <- as.character(tumor_only_maf$PHENO) | ||
tumor_only_maf$gnomad_3_1_1_AF_non_cancer <- as.character(tumor_only_maf$gnomad_3_1_1_AF_non_cancer) | ||
|
||
snv_final <- snv_consensus_hotspot_maf %>% | ||
dplyr::bind_rows(tumor_only_maf) | ||
|
||
write_tsv(snv_final, file.path(subset_dir, "snv_selected_genes.maf.tsv")) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
#!/bin/bash | ||
|
||
set -e | ||
set -o pipefail | ||
|
||
python_path=(/usr/bin/python3) | ||
maf_annotator=(/Users/gengz/Documents/GitHub/oncokb-annotator/MafAnnotator.py) | ||
maf_in=(/Users/gengz/Documents/GitHub/OpenPedCan-analysis/analyses/DMG_analysis/subset/snv_selected_genes.maf.tsv) | ||
maf_oncokb_out=(/Users/gengz/Documents/GitHub/OpenPedCan-analysis/analyses/DMG_analysis/subset/snv_selected_genes_oncokb.maf.tsv) | ||
|
||
# Run maf_annotator on dgd samples | ||
$python_path $maf_annotator -i $maf_in -o $maf_oncokb_out -b $ONCO_KB -q hgvsp_short -r GRCh38 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
library(tidyverse) | ||
library(reshape2) | ||
|
||
## set directories | ||
root_dir <- rprojroot::find_root(rprojroot::has_dir(".git")) | ||
data_dir <- file.path(root_dir, "data", "v13") | ||
subset_dir <- file.path(root_dir, "analyses", "DMG_analysis", "subset") | ||
result_dir <- file.path(root_dir, "analyses", "DMG_analysis", "results") | ||
|
||
|
||
## read histologies | ||
hist <- read_tsv(file.path(data_dir, "histologies.tsv")) | ||
selected_sample <- hist %>% | ||
filter(grepl(c("DMG"), molecular_subtype)) | ||
|
||
##snv file | ||
snv_annotate <- read_tsv(file.path(subset_dir, "snv_selected_genes_oncokb.maf.tsv")) | ||
snv_annotate_short <- snv_annotate %>% | ||
mutate(MUTATION_EFFECT = case_when(Hugo_Symbol == "EGFR" & | ||
HGVSp_Short %in% c("p.A289V", "p.A289T") ~ | ||
paste(MUTATION_EFFECT, "WHO mutation", sep = ";"), | ||
TRUE ~ MUTATION_EFFECT)) %>% | ||
select(Tumor_Sample_Barcode, MUTATION_EFFECT, Hugo_Symbol) | ||
|
||
## cn files | ||
cn_df <- read_tsv(file.path(data_dir, "consensus_wgs_plus_cnvkit_wxs_plus_freec_tumor_only.tsv.gz")) | ||
cn_filtered <- cn_df %>% | ||
filter(biospecimen_id %in% selected_sample$Kids_First_Biospecimen_ID, | ||
gene_symbol == "EGFR") %>% | ||
select(biospecimen_id, status, gene_symbol) %>% | ||
dplyr::rename("Tumor_Sample_Barcode" = "biospecimen_id", | ||
"MUTATION_EFFECT" = "status", | ||
"Hugo_Symbol" = "gene_symbol") %>% | ||
mutate(MUTATION_EFFECT = case_when(MUTATION_EFFECT == "amplification" ~ "amplification", | ||
TRUE ~ "")) | ||
rm(cn_df) | ||
|
||
## combined cnv with snv | ||
snv_onco <- cn_filtered %>% | ||
bind_rows(snv_annotate_short) %>% | ||
left_join(hist %>% select(Kids_First_Biospecimen_ID, match_id), | ||
by = c("Tumor_Sample_Barcode" = "Kids_First_Biospecimen_ID")) %>% | ||
select(match_id, MUTATION_EFFECT, Hugo_Symbol) %>% | ||
unique() %>% | ||
group_by(match_id, Hugo_Symbol) %>% | ||
summarise(status = paste0(MUTATION_EFFECT, collapse = ";")) %>% | ||
spread(Hugo_Symbol, status) | ||
|
||
## RNA files | ||
RNA <- read_rds(file.path(data_dir, "gene-expression-rsem-tpm-collapsed.rds")) | ||
col_rna <- selected_sample %>% filter(experimental_strategy == "RNA-Seq") %>% select(Kids_First_Biospecimen_ID, match_id) | ||
|
||
select_RNA <- RNA[rownames(RNA) %in% c("EZHIP", "EGFR"), col_rna %>% pull(Kids_First_Biospecimen_ID)] | ||
select_RNA <- as.data.frame(scale(t(select_RNA))) | ||
select_RNA$Kids_First_Biospecimen_ID <- rownames(select_RNA) | ||
|
||
select_RNA <- select_RNA %>% | ||
mutate(EGFR_exp = case_when(EGFR >=3 ~ "overexpression", | ||
TRUE ~ NA), | ||
EZHIP_exp = case_when(EZHIP >=3 ~ "overexpression", | ||
TRUE ~ NA)) %>% | ||
left_join(selected_sample %>% select(Kids_First_Biospecimen_ID, match_id)) %>% | ||
select(match_id, EGFR_exp, EZHIP_exp) %>% | ||
unique() | ||
|
||
## gather all datas into one table | ||
final_df <- selected_sample %>% | ||
select(match_id, age_at_diagnosis_days, reported_gender, molecular_subtype, tumor_descriptor) %>% | ||
unique() %>% | ||
left_join(snv_onco) %>% | ||
left_join(select_RNA) %>% | ||
mutate(reported_gender = case_when(reported_gender == "Not Reported" ~ "Unknown", TRUE ~ reported_gender)) %>% | ||
write_tsv(file.path(result_dir, "df_for_oncoplot.tsv")) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
--- | ||
title: "oncoplot_DMG" | ||
author: "ZZ" | ||
date: "2024-01-16" | ||
output: pdf_document | ||
--- | ||
|
||
## load libraries | ||
|
||
```{r libraries} | ||
library(tidyverse) | ||
library(ComplexHeatmap) | ||
library(reshape2) | ||
library(circlize) | ||
``` | ||
|
||
|
||
## set directories and read file | ||
```{r} | ||
root_dir <- rprojroot::find_root(rprojroot::has_dir(".git")) | ||
subset_dir <- file.path(root_dir, "analyses", "DMG_analysis", "subset") | ||
result_dir <- file.path(root_dir, "analyses", "DMG_analysis", "results") | ||
onco_df <- read_tsv(file.path(result_dir, "df_for_oncoplot.tsv")) | ||
``` | ||
|
||
oncoplot | ||
|
||
```{r} | ||
colname_annotate <- c("match_id", "reported_gender", "tumor_descriptor", "molecular_subtype","EGFR_exp", "EZHIP_exp") | ||
annotate_info <- as.data.frame(onco_df[,colname_annotate]) | ||
rownames(annotate_info) <- annotate_info$match_id | ||
annotate_info <- annotate_info[,-1] | ||
ha = HeatmapAnnotation(df = annotate_info, col = list(reported_gender = c("Male" = "#0707CF", | ||
"Female" = "#CC0303", | ||
"Unknown" = "white"), | ||
molecular_subtype = c("DMG, H3 K28" = "red", | ||
"DMG, H3 K28, TP53" = "green"))) | ||
mat <- as.matrix(onco_df[,-c(2,3,4,5,14,15)]) | ||
mat[is.na(mat)] = "" | ||
rownames(mat) = mat[, 1] | ||
mat = mat[, -1] | ||
mat = t(as.matrix(mat)) | ||
alter_fun = list( | ||
background = function(x, y, w, h) { | ||
grid.rect(x, y, w, h, gp = gpar(fill = "#ffffff",col= "#ffffff")) | ||
}, | ||
`Likely Gain-of-function` = function(x, y, w, h) { | ||
grid.rect(x, y, w-unit(0.3, "mm"), h-unit(0.3, "mm"), gp = gpar(fill = "#ff4d4d", col = NA)) | ||
}, | ||
`Likely Loss-of-function` = function(x, y, w, h) { | ||
grid.rect(x, y, w-unit(0.3, "mm"), h-unit(0.3, "mm"), gp = gpar(fill = "#0D47A1", col = NA)) | ||
}, | ||
Unknown = function(x, y, w, h) { | ||
grid.rect(x, y, w-unit(0.3, "mm"), h-unit(0.3, "mm"), gp = gpar(fill = "grey", col = NA)) | ||
}, | ||
`Loss-of-function` = function(x, y, w, h) { | ||
grid.rect(x, y, w-unit(0.3, "mm"), h-unit(0.3, "mm"), gp = gpar(fill = "#80bfff", col = NA)) | ||
}, | ||
Inconclusive = function(x, y, w, h) { | ||
grid.rect(x, y, w-unit(0.3, "mm"), h-unit(0.3, "mm"), gp = gpar(fill = "#8D6E63", col = NA)) | ||
}, | ||
`Gain-of-function` = function(x, y, w, h) { | ||
grid.rect(x, y, w-unit(0.3, "mm"), h-unit(0.3, "mm"), gp = gpar(fill = "#9966ff", col = NA)) | ||
}, | ||
`WHO mutation` = function(x, y, w, h) { | ||
grid.rect(x, y, w-unit(0.3, "mm"), h-unit(0.3, "mm"), gp = gpar(fill = "#E69F00", col = NA)) | ||
}, | ||
`amplification` = function(x, y, w, h) { | ||
grid.rect(x, y, w-unit(0.3, "mm"), h-unit(0.3, "mm"), gp = gpar(fill = "#827717", col = NA)) | ||
} | ||
) | ||
oncoplot <- oncoPrint(mat, get_type = function(x)strsplit(x, ";")[[1]], | ||
alter_fun = alter_fun, top_annotation = ha) | ||
pdf(file = "oncoplot.pdf", width = 16, height = 8) | ||
draw(oncoplot) | ||
dev.off() | ||
``` | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
library(GSVA) | ||
|
||
## set directories | ||
root_dir <- rprojroot::find_root(rprojroot::has_dir(".git")) | ||
data_dir <- file.path(root_dir, "data", "v13") | ||
subset_dir <- file.path(root_dir, "analyses", "DMG_analysis", "subset") | ||
result_dir <- file.path(root_dir, "analyses", "DMG_analysis", "results") | ||
|
||
|
||
## read histologies | ||
hist <- read_tsv(file.path(data_dir, "histologies.tsv")) | ||
selected_sample <- hist %>% | ||
filter(grepl(c("DMG"), molecular_subtype)) | ||
onco_df <- read_tsv(file.path(result_dir, "df_for_oncoplot.tsv")) | ||
|
||
## RNA | ||
RNA <- read_rds(file.path(data_dir, "gene-expression-rsem-tpm-collapsed.rds")) | ||
col_rna <- selected_sample %>% | ||
filter(experimental_strategy == "RNA-Seq") %>% | ||
select(Kids_First_Biospecimen_ID, match_id) | ||
select_RNA_all <- RNA[, col_rna %>% pull(Kids_First_Biospecimen_ID)] | ||
log_rna <- as.matrix(log2(select_RNA_all + 1)) | ||
|
||
## Hallmark gene | ||
human_hallmark <- msigdbr::msigdbr(species = "Homo sapiens", | ||
category = "H") | ||
|
||
human_hallmark_twocols <- human_hallmark %>% | ||
select(gs_name, gene_symbol) | ||
|
||
human_hallmark_list <- base::split( | ||
human_hallmark_twocols$gene_symbol, | ||
list(human_hallmark_twocols$gs_name)) | ||
|
||
## annotation | ||
col_annotate <- col_rna %>% | ||
left_join(onco_df %>% select(match_id, EGFR)) %>% | ||
mutate(EGFR_mut = case_when(!is.na(EGFR) ~ "EGFR mutated", TRUE ~ "EGFR unmutated")) %>% | ||
select(-match_id) | ||
|
||
RNA_EGFR_un <- as.matrix(log_rna[, col_annotate %>% filter(EGFR_mut == "EGFR unmutated") %>% pull(Kids_First_Biospecimen_ID)]) | ||
RNA_EGFR <- as.matrix(log_rna[, col_annotate %>% filter(EGFR_mut == "EGFR mutated") %>% pull(Kids_First_Biospecimen_ID)]) | ||
|
||
## GSVA for all samples | ||
Hallmark_gsea_score_all <- GSVA::gsva(expr = log_rna, | ||
gset.idx.list = human_hallmark_list, | ||
method = "gsva", | ||
min.sz = 1, max.sz = 1500, | ||
parallel.sz = 8, | ||
mx.diff = TRUE) | ||
|
||
colAnn <- ComplexHeatmap::HeatmapAnnotation(EGFR_mut = col_annotete$EGFR_mut, which = "col") | ||
hm <- ComplexHeatmap::Heatmap(Hallmark_gsea_score_all, | ||
show_column_names = FALSE, top_annotation = colAnn, | ||
row_names_gp = grid::gpar(fontsize = 5.8), | ||
name = "GSVA score") | ||
|
||
pdf("GSVA.pdf", height = 10, width = 15) | ||
ComplexHeatmap::draw(hm) | ||
dev.off() | ||
|
||
## GSVA on EGFR mutated and unmutated | ||
Hallmark_gsea_score <- GSVA::gsva(expr = RNA_EGFR, | ||
gset.idx.list = human_hallmark_list, | ||
method = "gsva", | ||
min.sz = 1, max.sz = 1500, | ||
parallel.sz = 8, | ||
mx.diff = TRUE) | ||
|
||
Hallmark_gsea_score_un <- GSVA::gsva(expr = RNA_EGFR_un, | ||
gset.idx.list = human_hallmark_list, | ||
method = "gsva", | ||
min.sz = 1, max.sz = 1500, | ||
parallel.sz = 8, | ||
mx.diff = TRUE) | ||
|
||
ComplexHeatmap::Heatmap(Hallmark_gsea_score) | ||
ComplexHeatmap::Heatmap(Hallmark_gsea_score_un) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
--- | ||
title: "summary_DMG" | ||
author: "ZZ" | ||
date: "2024-01-15" | ||
output: pdf_document | ||
--- | ||
|
||
## libraries | ||
```{r} | ||
library(tidyverse) | ||
``` | ||
|
||
## set directories | ||
```{r} | ||
root_dir <- rprojroot::find_root(rprojroot::has_dir(".git")) | ||
data_dir <- file.path(root_dir, "data", "v13") | ||
subset_dir <- file.path(root_dir, "analyses", "DMG_analysis", "subset") | ||
result_dir <- file.path(root_dir, "analyses", "DMG_analysis", "results") | ||
``` | ||
|
||
## load files | ||
|
||
```{r} | ||
hist <- read_tsv(file.path(data_dir, "histologies.tsv")) | ||
selected_sample <- hist %>% | ||
filter(grepl(c("DMG"), molecular_subtype)) | ||
onco_df <- read_tsv(file.path(result_dir, "df_for_oncoplot.tsv")) | ||
sv <- data.table::fread(file.path(data_dir, "sv-manta.tsv.gz")) | ||
tp53 <- read_tsv(file.path(root_dir, "analyses", "tp53_nf1_score", "results", "tp53_altered_status.tsv")) | ||
``` | ||
### subset files | ||
```{r} | ||
tp53_select <- tp53 %>% | ||
filter(match_id %in% selected_sample$match_id) %>% | ||
select(match_id, tp53_score, tp53_altered) %>% | ||
mutate(tp53_alteration = case_when(tp53_altered %in% c("activated", "loss") ~ "Y", TRUE ~ "N")) %>% | ||
unique() | ||
sv_selected <- sv %>% | ||
filter(Kids.First.Biospecimen.ID.Tumor %in% selected_sample$Kids_First_Biospecimen_ID, | ||
Gene_name == "EGFR") %>% | ||
select(Gene_name, Kids.First.Biospecimen.ID.Tumor, SV_type) %>% | ||
dplyr::rename("Kids_First_Biospecimen_ID" = "Kids.First.Biospecimen.ID.Tumor") %>% | ||
left_join(selected_sample %>% select(Kids_First_Biospecimen_ID, match_id)) %>% | ||
mutate(EGFR_ins = case_when(SV_type == "INS" ~ "Y", | ||
TRUE ~ "N")) %>% | ||
select(match_id, EGFR_ins, SV_type) %>% | ||
unique() | ||
rm(sv) | ||
``` | ||
|
||
### transform onco file | ||
|
||
```{r} | ||
snv_annotate <- read_tsv(file.path(subset_dir, "snv_selected_genes_oncokb.maf.tsv")) | ||
snv_annotate_1 <- snv_annotate %>% | ||
left_join(selected_sample %>% select(match_id, Kids_First_Biospecimen_ID), | ||
by = c("Tumor_Sample_Barcode" = "Kids_First_Biospecimen_ID")) %>% | ||
mutate(H3.1_K28M = case_when(Hugo_Symbol == "H3-3A" & HGVSp_Short == "p.K28M" ~ "Y", TRUE ~ "N"), | ||
H3.3_K28M = case_when(Hugo_Symbol %in% c("H3C2", "H3C3") & HGVSp_Short == "p.K28M" ~ "Y", TRUE ~ "N"), | ||
EGFR_ins = case_when(grepl("Ins", Variant_Classification) & Hugo_Symbol == "EGFR" ~ "Y", TRUE ~ "N"), | ||
EGFR_onco = case_when(Hugo_Symbol == "EGFR" & ONCOGENIC == "Oncogenic" ~ "Y", TRUE ~ "N"), | ||
EGFR_WHO_reported = case_when(Hugo_Symbol == "EGFR" & HGVSp_Short %in% c("p.A289T", "p.A289V") ~ "Y", TRUE ~ "N"), | ||
ATRX_onco = case_when(Hugo_Symbol == "ATRX" & ONCOGENIC == "Oncogenic" ~ "Y", TRUE ~ "N")) %>% | ||
select(match_id, H3.1_K28M, H3.3_K28M, EGFR_ins, EGFR_onco, EGFR_WHO_reported, ATRX_onco) %>% | ||
filter(rowSums(is.na(.)) != 6) %>% | ||
group_by(match_id) %>% | ||
summarize_at(vars(H3.1_K28M, H3.3_K28M, EGFR_ins, EGFR_onco, EGFR_WHO_reported, ATRX_onco), | ||
funs(sum = paste(unique(.), collapse = ";"))) %>% | ||
unique() | ||
``` | ||
|
||
```{r} | ||
summary_df <- onco_df %>% | ||
mutate(H3_WT = case_when(is.na(`H3-3A`) & is.na(H3C14) & is.na(H3C2) & is.na(H3C3) ~ "Y", TRUE ~ "N"), | ||
EGFR_overexp = case_when(EGFR_exp == "overexpression" ~ "Y", TRUE ~ "N"), | ||
EZHIP_overexp = case_when(EZHIP_exp == "overexpression" ~ "Y", TRUE ~ "N"), | ||
EGFR_amp = case_when(grepl("amplification", EGFR) ~ "Y", TRUE ~ "N")) %>% | ||
select(match_id, H3_WT, EGFR_overexp, EZHIP_overexp, EGFR_amp) %>% | ||
left_join(tp53_select) %>% | ||
left_join(snv_annotate_1) %>% | ||
left_join(sv_selected) %>% | ||
mutate(H3.1_K28M_sum = case_when(H3.1_K28M_sum %in% c("Y;N", "N;Y") ~ "Y", TRUE ~ H3.1_K28M_sum), | ||
H3.3_K28M_sum = case_when(H3.3_K28M_sum %in% c("Y;N", "N;Y") ~ "Y", TRUE ~ H3.3_K28M_sum), | ||
EGFR_ins_sum = case_when(EGFR_ins_sum %in% c("Y;N", "N;Y") ~ "Y", TRUE ~ EGFR_ins_sum), | ||
EGFR_onco_sum = case_when(EGFR_onco_sum %in% c("Y;N", "N;Y") ~ "Y", TRUE ~ EGFR_onco_sum), | ||
EGFR_WHO_reported_sum = case_when(EGFR_WHO_reported_sum %in% c("Y;N", "N;Y") ~ "Y", TRUE ~ EGFR_WHO_reported_sum)) | ||
write_tsv(summary_df, file.path(result_dir, "summary_table.tsv")) | ||
``` |
Oops, something went wrong.