Skip to content

dajmcdon/rtestim

Repository files navigation

rtestim rtestim website

R-CMD-check

This package uses Poisson likelihood with a trend filtering penalty (a type of regularized nonparametric regression) to estimate the effective reproductive number, Rt. This value roughly says “how many new infections will result from each new infection today”. Values larger than 1 indicate that an epidemic is growing while those less than 1 indicate decline.

Installation

You can install the development version of rtestim from GitHub with:

# install.packages("remotes")
remotes::install_github("dajmcdon/rtestim")

Quick example

Here we create some data that “looks” like a typical wave in an epidemic. Because the model uses regularized regression, we estimate the model at a range of tuning parameters simultaneously.

set.seed(12345)
library(rtestim)
library(ggplot2)
dat <- data.frame(
  Time = 1:101,
  incident_cases = c(1, rpois(100, dnorm(1:100, 50, 15) * 500 + 1))
)
ggplot(dat, aes(Time, incident_cases)) +
  geom_point(colour = "cornflowerblue") +
  theme_bw()

We fit the model and visualize the resulting estimated sequences of $R_t$:

mod <- estimate_rt(observed_counts = dat$incident_cases, nsol = 20)
plot(mod)

The additional parameter nsol = 20 specifies the number of $\lambda$s for which $R_t$ is estimated.

A built in function for cross-validation can be used to select the tuning parameter.

mod_cv <- cv_estimate_rt(dat$incident_cases, nsol = 20)
plot(mod_cv, which_lambda = "lambda.1se")

About

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •