forked from openvinotoolkit/nncf
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0931072
commit c3b6903
Showing
17 changed files
with
18,501 additions
and
63 deletions.
There are no files selected for viewing
189 changes: 189 additions & 0 deletions
189
nncf/experimental/quantization/quantizers/openvino_quantizer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
# Copyright (c) 2025 Intel Corporation | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from collections import defaultdict | ||
from typing import Optional, Union | ||
|
||
import torch.fx | ||
from torch.ao.quantization.observer import HistogramObserver | ||
from torch.ao.quantization.observer import PerChannelMinMaxObserver | ||
from torch.ao.quantization.quantizer.quantizer import QuantizationAnnotation as InductorQAnotation | ||
from torch.ao.quantization.quantizer.quantizer import QuantizationSpec as InductorQuantizationSpec | ||
from torch.ao.quantization.quantizer.quantizer import Quantizer as TorchAOQuantizer | ||
|
||
from nncf.common.graph.graph import NNCFGraph | ||
from nncf.common.quantization.quantizer_propagation.solver import QuantizerPropagationRule | ||
from nncf.common.quantization.quantizer_setup import ActivationQuantizationInsertionPoint | ||
from nncf.common.quantization.quantizer_setup import SingleConfigQuantizerSetup | ||
from nncf.common.quantization.structs import QuantizationPreset | ||
from nncf.common.quantization.structs import QuantizationScheme | ||
from nncf.common.quantization.structs import QuantizerConfig as NNCFQuantizerConfig | ||
from nncf.experimental.quantization.quantizers.quantizer import Quantizer | ||
from nncf.experimental.torch.fx.nncf_graph_builder import GraphConverter | ||
from nncf.experimental.torch.fx.node_utils import get_graph_node_by_name | ||
from nncf.experimental.torch.fx.transformations import fold_constant_except_qdq | ||
from nncf.parameters import ModelType | ||
from nncf.parameters import QuantizationMode | ||
from nncf.parameters import TargetDevice | ||
from nncf.quantization.advanced_parameters import FP8QuantizationParameters | ||
from nncf.quantization.advanced_parameters import OverflowFix | ||
from nncf.quantization.advanced_parameters import QuantizationParameters | ||
from nncf.quantization.algorithms.min_max.algorithm import MinMaxQuantization | ||
from nncf.scopes import IgnoredScope | ||
|
||
QUANT_ANNOTATION_KEY = "quantization_annotation" | ||
|
||
|
||
class OpenVINOQuantizer(TorchAOQuantizer): | ||
""" | ||
Implementation of the Torch AO quantizer which annotates models with quantization annotations | ||
optimally for the inference via OpenVINO. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
mode: Optional[QuantizationMode] = None, | ||
preset: Optional[QuantizationPreset] = None, | ||
target_device: TargetDevice = TargetDevice.ANY, | ||
model_type: Optional[ModelType] = None, | ||
ignored_scope: Optional[IgnoredScope] = None, | ||
overflow_fix: Optional[OverflowFix] = None, | ||
quantize_outputs: bool = False, | ||
activations_quantization_params: Union[QuantizationParameters, FP8QuantizationParameters] = None, | ||
weights_quantization_params: Union[QuantizationParameters, FP8QuantizationParameters] = None, | ||
quantizer_propagation_rule: Optional[QuantizerPropagationRule] = None, | ||
): | ||
""" | ||
:param mode: Defines optimization mode for the algorithm. None by default. | ||
:param preset: A preset controls the quantization mode (symmetric and asymmetric). | ||
It can take the following values: | ||
- `performance`: Symmetric quantization of weights and activations. | ||
- `mixed`: Symmetric quantization of weights and asymmetric quantization of activations. | ||
Default value is None. In this case, `mixed` preset is used for `transformer` | ||
model type otherwise `performance`. | ||
:param target_device: A target device the specificity of which will be taken | ||
into account while compressing in order to obtain the best performance | ||
for this type of device, defaults to TargetDevice.ANY. | ||
:param model_type: Model type is needed to specify additional patterns | ||
in the model. Supported only `transformer` now. | ||
:param ignored_scope: An ignored scope that defined the list of model control | ||
flow graph nodes to be ignored during quantization. | ||
:param overflow_fix: This option controls whether to apply the overflow issue | ||
fix for the 8-bit quantization. | ||
:param quantize_outputs: Whether to insert additional quantizers right before | ||
each of the model outputs. | ||
:param activations_quantization_params: Quantization parameters for model | ||
activations. | ||
:param weights_quantization_params: Quantization parameters for model weights. | ||
:param quantizer_propagation_rule: The strategy to be used while propagating and merging quantizers. | ||
""" | ||
self._min_max_algo = MinMaxQuantization( | ||
mode=mode, | ||
preset=preset, | ||
target_device=target_device, | ||
model_type=model_type, | ||
ignored_scope=ignored_scope, | ||
overflow_fix=overflow_fix, | ||
quantize_outputs=quantize_outputs, | ||
activations_quantization_params=activations_quantization_params, | ||
weights_quantization_params=weights_quantization_params, | ||
quantizer_propagation_rule=quantizer_propagation_rule, | ||
) | ||
|
||
def get_quantization_setup(self, model: torch.fx.GraphModule, nncf_graph: NNCFGraph) -> SingleConfigQuantizerSetup: | ||
self._min_max_algo._set_backend_entity(model) | ||
return self._min_max_algo.find_quantization_setup(model, nncf_graph) | ||
|
||
def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule: | ||
nncf_grpah = GraphConverter.create_nncf_graph(model) | ||
quantization_setup = self.get_quantization_setup(model, nncf_grpah) | ||
target_node_vs_qp = defaultdict(list) | ||
graph = model.graph | ||
for qp in quantization_setup.quantization_points.values(): | ||
target_node_vs_qp[qp.insertion_point.target_node_name].append(qp) | ||
|
||
for target_node_name, qps in target_node_vs_qp.items(): | ||
input_qspec_map = dict() | ||
output_qspec = None | ||
target_node = get_graph_node_by_name(graph, target_node_name) | ||
for qp in qps: | ||
ip = qp.insertion_point | ||
if isinstance(ip, ActivationQuantizationInsertionPoint): | ||
inductor_qspec = self._convert_nncf_qspec_to_inductor_qspec(qp.qconfig, is_weight=False) | ||
if ip.input_port_id is None: | ||
output_qspec = inductor_qspec | ||
else: | ||
node = target_node.all_input_nodes[ip.input_port_id] | ||
input_qspec_map[node] = inductor_qspec | ||
else: | ||
inductor_qspec = self._convert_nncf_qspec_to_inductor_qspec(qp.qconfig, is_weight=True) | ||
weight_node = target_node.all_input_nodes[1] | ||
input_qspec_map[weight_node] = inductor_qspec | ||
|
||
annotation = InductorQAnotation(input_qspec_map=input_qspec_map, output_qspec=output_qspec) | ||
assert QUANT_ANNOTATION_KEY not in target_node.meta | ||
target_node.meta[QUANT_ANNOTATION_KEY] = annotation | ||
|
||
def _convert_nncf_qspec_to_inductor_qspec( | ||
self, qspec: NNCFQuantizerConfig, is_weight: bool | ||
) -> InductorQuantizationSpec: | ||
extra_args = {"eps": 2**-12} | ||
if qspec.per_channel: | ||
torch_qscheme = ( | ||
torch.per_channel_symmetric if qspec.mode is QuantizationScheme.SYMMETRIC else torch.per_channel_affine | ||
) | ||
else: | ||
torch_qscheme = ( | ||
torch.per_tensor_symmetric if qspec.mode is QuantizationScheme.SYMMETRIC else torch.per_tensor_affine | ||
) | ||
if is_weight: | ||
observer = PerChannelMinMaxObserver | ||
quant_min = -128 | ||
quant_max = 127 | ||
dtype = torch.int8 | ||
channel_axis = 0 | ||
else: | ||
observer = ( | ||
HistogramObserver | ||
if torch_qscheme in [torch.per_tensor_symmetric, torch.per_tensor_affine] | ||
else PerChannelMinMaxObserver | ||
) | ||
quant_min = 0 | ||
quant_max = 255 | ||
dtype = torch.int8 if qspec.signedness_to_force else torch.uint8 | ||
channel_axis = 1 # channel dim for activations | ||
return InductorQuantizationSpec( | ||
dtype=dtype, | ||
observer_or_fake_quant_ctr=observer.with_args(**extra_args), | ||
quant_min=quant_min, | ||
quant_max=quant_max, | ||
qscheme=torch_qscheme, | ||
ch_axis=channel_axis, | ||
is_dynamic=False, | ||
) | ||
|
||
def validate(self, model: torch.fx.GraphModule) -> None: | ||
pass | ||
|
||
def transform_for_annotation(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule: | ||
fold_constant_except_qdq(model) | ||
return model | ||
|
||
|
||
class OpenVINOQuantizerAdapter(Quantizer): | ||
def __init__(self, quantizer: OpenVINOQuantizer): | ||
self._quantizer = quantizer | ||
|
||
def transform_prior_quantization(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule: | ||
return self._quantizer.transform_for_annotation(model) | ||
|
||
def get_quantization_setup(self, model: torch.fx.GraphModule, nncf_graph: NNCFGraph) -> SingleConfigQuantizerSetup: | ||
return self._quantizer.get_quantization_setup(model, nncf_graph) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.