Skip to content

Commit

Permalink
Fix docker and add huggingface model (#237)
Browse files Browse the repository at this point in the history
* update load model from huggingface

* update load model from huggingface

* fix data ndarray not list

* docker free disk

* add package push

* docker replace conda to pip, fix path setup

* add setuptools wheel twine in docker

* add setuptools wheel twine in package

* add cddir in next run

* post1 and clean branch
  • Loading branch information
emotionor authored Jun 25, 2024
1 parent 6520ed4 commit aae9fbd
Show file tree
Hide file tree
Showing 11 changed files with 112 additions and 139 deletions.
51 changes: 50 additions & 1 deletion .github/workflows/docker.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,58 @@ jobs:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
-
name: Build and push
name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: false

# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: false
swap-storage: false
-
name: Set up swap space
uses: pierotofy/[email protected]
with:
swap-size-gb: 10
-
name: Build and push with rdma
uses: docker/build-push-action@v3
with:
context: ./unimol/docker/
push: true
tags: dptechnology/unimol:latest-pytorch1.11.0-cuda11.3

publish_package:
name: Publish package
needs: [docker]

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

- uses: actions/setup-python@v4
with:
python-version: '3.10'

- name: Build core package
env:
FLASH_ATTENTION_SKIP_CUDA_BUILD: "TRUE"
run: |
pip install setuptools wheel twine
cd unimol_tools
python setup.py sdist --dist-dir=dist
- name: Deploy
env:
TWINE_USERNAME: "__token__"
TWINE_PASSWORD: ${{ secrets.PYPI_TOKEN }}
run: |
cd unimol_tools
python -m twine upload dist/*
6 changes: 4 additions & 2 deletions unimol/docker/Dockerfile
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
FROM dptechnology/unicore:0.0.1-pytorch1.11.0-cuda11.3

RUN conda install -y -c conda-forge rdkit==2021.09.5 && conda clean -ya
RUN pip install setuptools wheel twine

RUN pip install rdkit-pypi==2021.9.5.1

RUN ldconfig && \
apt-get clean && \
apt-get autoremove && \
rm -rf /var/lib/apt/lists/* /tmp/* && \
conda clean -ya
pip cache purge
2 changes: 1 addition & 1 deletion unimol_tools/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

setup(
name="unimol_tools",
version="0.1.0",
version="0.1.0.post1",
description=("unimol_tools is a Python package for property prediciton with Uni-Mol in molecule, materials and protein."),
author="DP Technology",
author_email="[email protected]",
Expand Down
7 changes: 4 additions & 3 deletions unimol_tools/unimol_tools/data/conformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,10 @@
from .dictionary import Dictionary
from multiprocessing import Pool
from tqdm import tqdm
import pathlib

from ..utils import logger
from ..config import MODEL_CONFIG

WEIGHT_DIR = os.path.join(pathlib.Path(__file__).resolve().parents[1], 'weights')
from ..weights import weight_download, WEIGHT_DIR


class ConformerGen(object):
Expand Down Expand Up @@ -59,6 +58,8 @@ def _init_features(self, **params):
self.dict_name = MODEL_CONFIG['dict'][name]
else:
self.dict_name = MODEL_CONFIG['dict'][self.data_type]
if not os.path.exists(os.path.join(WEIGHT_DIR, self.dict_name)):
weight_download(self.dict_name, WEIGHT_DIR)
self.dictionary = Dictionary.load(os.path.join(WEIGHT_DIR, self.dict_name))
self.dictionary.add_symbol("[MASK]", is_special=True)

Expand Down
3 changes: 1 addition & 2 deletions unimol_tools/unimol_tools/data/datareader.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
from ..utils import logger
import pathlib
from rdkit.Chem.Scaffolds import MurckoScaffold
WEIGHT_DIR = os.path.join(pathlib.Path(__file__).resolve().parents[1], 'weights')

class MolDataReader(object):
'''A class to read Mol Data.'''
Expand Down Expand Up @@ -60,7 +59,7 @@ def read_data(self, data=None, is_train=True, **params):
_ = data.pop('target', None)
data = pd.DataFrame(data).rename(columns={smiles_col: 'SMILES'})

elif isinstance(data, list):
elif isinstance(data, list) or isinstance(data, np.ndarray):
# load from smiles list
data = pd.DataFrame(data, columns=['SMILES'])
else:
Expand Down
14 changes: 8 additions & 6 deletions unimol_tools/unimol_tools/models/unimol.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,12 @@
from ..utils import logger
from ..config import MODEL_CONFIG
from ..data import Dictionary
from ..weights import weight_download, WEIGHT_DIR

BACKBONE = {
'transformer': TransformerEncoderWithPair,
}

WEIGHT_DIR = os.path.join(pathlib.Path(__file__).resolve().parents[1], 'weights')

class UniMolModel(nn.Module):
"""
UniMolModel is a specialized model for molecular, protein, crystal, or MOF (Metal-Organic Frameworks) data.
Expand Down Expand Up @@ -67,11 +66,14 @@ def __init__(self, output_dim=2, data_type='molecule', **params):
if data_type == 'molecule':
name = "no_h" if self.remove_hs else "all_h"
name = data_type + '_' + name
self.pretrain_path = os.path.join(WEIGHT_DIR, MODEL_CONFIG['weight'][name])
self.dictionary = Dictionary.load(os.path.join(WEIGHT_DIR, MODEL_CONFIG['dict'][name]))
else:
self.pretrain_path = os.path.join(WEIGHT_DIR, MODEL_CONFIG['weight'][data_type])
self.dictionary = Dictionary.load(os.path.join(WEIGHT_DIR, MODEL_CONFIG['dict'][data_type]))
name = data_type
if not os.path.exists(os.path.join(WEIGHT_DIR, MODEL_CONFIG['weight'][name])):
weight_download(MODEL_CONFIG['weight'][name], WEIGHT_DIR)
if not os.path.exists(os.path.join(WEIGHT_DIR, MODEL_CONFIG['dict'][name])):
weight_download(MODEL_CONFIG['dict'][name], WEIGHT_DIR)
self.pretrain_path = os.path.join(WEIGHT_DIR, MODEL_CONFIG['weight'][name])
self.dictionary = Dictionary.load(os.path.join(WEIGHT_DIR, MODEL_CONFIG['dict'][name]))
self.mask_idx = self.dictionary.add_symbol("[MASK]", is_special=True)
self.padding_idx = self.dictionary.pad()
self.embed_tokens = nn.Embedding(
Expand Down
2 changes: 1 addition & 1 deletion unimol_tools/unimol_tools/utils/base_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,5 +83,5 @@ def get_logger(self):
self.logger.addHandler(file_handler)
return self.logger

logger = Logger('Uni-Mol(QSAR)').get_logger()
logger = Logger('Uni-Mol Tools').get_logger()
logger.setLevel(logging.INFO)
1 change: 1 addition & 0 deletions unimol_tools/unimol_tools/weights/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .weighthub import weight_download, WEIGHT_DIR
30 changes: 0 additions & 30 deletions unimol_tools/unimol_tools/weights/mol.dict.txt

This file was deleted.

93 changes: 0 additions & 93 deletions unimol_tools/unimol_tools/weights/oled.dict.txt

This file was deleted.

42 changes: 42 additions & 0 deletions unimol_tools/unimol_tools/weights/weighthub.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import os

from ..utils import logger

try:
from huggingface_hub import snapshot_download
except:
huggingface_hub_installed = False
def snapshot_download(*args, **kwargs):
raise ImportError('huggingface_hub is not installed. If weights are not avaliable, please install it by running: pip install huggingface_hub. Otherwise, please download the weights manually from https://huggingface.co/dptech/Uni-Mol-Models')

WEIGHT_DIR = os.path.dirname(os.path.abspath(__file__))

os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" # use mirror to download weights

def weight_download(pretrain, save_path, local_dir_use_symlinks=True):
if os.path.exists(os.path.join(save_path, pretrain)):
logger.info(f'{pretrain} exists in {save_path}')
return

logger.info(f'Downloading {pretrain}')
snapshot_download(
repo_id="dptech/Uni-Mol-Models",
local_dir=save_path,
allow_patterns=pretrain,
local_dir_use_symlinks=local_dir_use_symlinks,
#max_workers=8
)

# Download all the weights when this script is run
def download_all_weights(local_dir_use_symlinks=False):
logger.info(f'Downloading all weights to {WEIGHT_DIR}')
snapshot_download(
repo_id="dptech/Uni-Mol-Models",
local_dir=WEIGHT_DIR,
allow_patterns='*',
local_dir_use_symlinks=local_dir_use_symlinks,
#max_workers=8
)

if '__main__' == __name__:
download_all_weights()

0 comments on commit aae9fbd

Please sign in to comment.