-
Notifications
You must be signed in to change notification settings - Fork 525
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
support sharing fitting network parameters (#2211)
Add `layer_name` parameter to share network parameters among different fitting network layers. Signed-off-by: Jinzhe Zeng <[email protected]>
- Loading branch information
Showing
6 changed files
with
294 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
import numpy as np | ||
|
||
from deepmd.env import tf | ||
from common import gen_data, del_data, j_loader | ||
from common import DataSystem | ||
from deepmd.descriptor import DescrptSeA | ||
from deepmd.fit import EnerFitting, DipoleFittingSeA | ||
from deepmd.model import MultiModel | ||
from deepmd.common import j_must_have | ||
|
||
GLOBAL_ENER_FLOAT_PRECISION = tf.float64 | ||
GLOBAL_TF_FLOAT_PRECISION = tf.float64 | ||
GLOBAL_NP_FLOAT_PRECISION = np.float64 | ||
|
||
|
||
class TestModel(tf.test.TestCase): | ||
def setUp(self): | ||
gen_data() | ||
|
||
def tearDown(self): | ||
del_data() | ||
|
||
def test_model(self): | ||
"""Two fittings which share the same parameters should give the same result""" | ||
jfile = 'water_layer_name.json' | ||
jdata = j_loader(jfile) | ||
|
||
systems = j_must_have(jdata, 'systems') | ||
set_pfx = j_must_have(jdata, 'set_prefix') | ||
batch_size = j_must_have(jdata, 'batch_size') | ||
test_size = j_must_have(jdata, 'numb_test') | ||
batch_size = 1 | ||
test_size = 1 | ||
rcut = j_must_have(jdata['model']['descriptor'], 'rcut') | ||
|
||
data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) | ||
|
||
test_data = data.get_test() | ||
numb_test = 1 | ||
|
||
jdata['model']['descriptor'].pop('type', None) | ||
jdata['model']['descriptor']['multi_task'] = True | ||
descrpt = DescrptSeA(**jdata['model']['descriptor'], uniform_seed=True) | ||
fitting_dict = {} | ||
fitting_type_dict = {} | ||
for fitting_key in jdata['model']['fitting_net_dict']: | ||
item_fitting_param = jdata['model']['fitting_net_dict'][fitting_key] | ||
item_fitting_type = item_fitting_param.get('type', 'ener') | ||
fitting_type_dict[fitting_key] = item_fitting_type | ||
item_fitting_param.pop('type', None) | ||
item_fitting_param.pop('fit_diag', None) | ||
item_fitting_param['descrpt'] = descrpt | ||
if item_fitting_type == 'ener': | ||
fitting_dict[fitting_key] = EnerFitting(**item_fitting_param, uniform_seed=True) | ||
elif item_fitting_type == 'dipole': | ||
fitting_dict[fitting_key] = DipoleFittingSeA(**item_fitting_param, uniform_seed=True) | ||
else: | ||
raise RuntimeError('Test should not be here!') | ||
model = MultiModel(descrpt, fitting_dict, fitting_type_dict) | ||
|
||
input_data = {'coord': [test_data['coord']], | ||
'box': [test_data['box']], | ||
'type': [test_data['type']], | ||
'natoms_vec': [test_data['natoms_vec']], | ||
'default_mesh': [test_data['default_mesh']] | ||
} | ||
|
||
for fitting_key in jdata['model']['fitting_net_dict']: | ||
model._compute_input_stat(input_data, fitting_key=fitting_key) | ||
model.descrpt.merge_input_stats(model.descrpt.stat_dict) | ||
model.descrpt.bias_atom_e = data.compute_energy_shift() | ||
|
||
t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') | ||
t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name='t_energy') | ||
t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_force') | ||
t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_virial') | ||
t_atom_ener = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_atom_ener') | ||
t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') | ||
t_type = tf.placeholder(tf.int32, [None], name='i_type') | ||
t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name='i_natoms') | ||
t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') | ||
t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') | ||
is_training = tf.placeholder(tf.bool) | ||
t_fparam = None | ||
|
||
model_pred \ | ||
= model.build(t_coord, | ||
t_type, | ||
t_natoms, | ||
t_box, | ||
t_mesh, | ||
t_fparam, | ||
suffix="_layer_name", | ||
reuse=False) | ||
|
||
e_energy1 = model_pred['water_ener']['energy'] | ||
e_force1 = model_pred['water_ener']['force'] | ||
e_virial1 = model_pred['water_ener']['virial'] | ||
e_energy2 = model_pred['water_ener2']['energy'] | ||
e_force2 = model_pred['water_ener2']['force'] | ||
e_virial2 = model_pred['water_ener2']['virial'] | ||
feed_dict_test = {t_prop_c: test_data['prop_c'], | ||
t_energy: test_data['energy'][:numb_test], | ||
t_force: np.reshape(test_data['force'][:numb_test, :], [-1]), | ||
t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]), | ||
t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), | ||
t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), | ||
t_box: test_data['box'][:numb_test, :], | ||
t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), | ||
t_natoms: test_data['natoms_vec'], | ||
t_mesh: test_data['default_mesh'], | ||
is_training: False} | ||
|
||
with self.test_session() as sess: | ||
sess.run(tf.global_variables_initializer()) | ||
[e1, f1, v1, e2, f2, v2] = sess.run( | ||
[e_energy1, e_force1, e_virial1, e_energy2, e_force2, e_virial2], | ||
feed_dict=feed_dict_test) | ||
np.testing.assert_allclose(e1, e2, rtol=1e-5, atol=1e-5) | ||
np.testing.assert_allclose(f1, f2, rtol=1e-5, atol=1e-5) | ||
np.testing.assert_allclose(v1, v2, rtol=1e-5, atol=1e-5) |
Oops, something went wrong.