Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Atualização do Arquivo #65

Open
wants to merge 37 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
37 commits
Select commit Hold shift + click to select a range
2426e0b
Create LDR.md
HackEduca Sep 8, 2020
f2f2f26
Update LDR.md
elainerocha Sep 8, 2020
2303c95
Delete LDR.md
HackEduca Sep 8, 2020
aa0a842
Merge branch 'master' of https://github.com/elainerocha/curso-fiot
HackEduca Sep 8, 2020
dbfdc2c
microbit
elainerocha Sep 20, 2020
0b7c250
Update microbit.md
elainerocha Sep 20, 2020
083f4f7
Update microbit.md
elainerocha Sep 20, 2020
16d8379
Update microbit.md
elainerocha Sep 20, 2020
875f441
Update microbit.md
elainerocha Sep 20, 2020
0f1635f
atualizando local do arquivo e da imagem.
deusanyjunior Sep 22, 2020
8c1ae7c
Merge pull request #1 from deusanyjunior/master
elainerocha Sep 29, 2020
1d1b8cf
Create Wifi_n.md
elainerocha Sep 29, 2020
687755c
wifi_n
elainerocha Sep 29, 2020
f01b8b9
Update #modelo.md
elainerocha Sep 29, 2020
f1cef59
Update #modelo.md
elainerocha Sep 29, 2020
c1c749b
Update #modelo.md
elainerocha Sep 29, 2020
00a0fb8
Update #modelo.md
elainerocha Sep 29, 2020
c440fbb
change file
elainerocha Sep 29, 2020
ca350bc
Rename #modelo.md to Wifi_n_1.md
elainerocha Sep 29, 2020
d617f3a
Rename Wifi_n.md to #modelo.md
elainerocha Sep 29, 2020
3405b86
Rename Wifi_n_1.md to Wifi_n.md
elainerocha Sep 29, 2020
c5ab1a0
Merge branch 'master' into master
deusanyjunior Sep 30, 2020
f01121b
Merge pull request #2 from deusanyjunior/master
elainerocha Oct 21, 2020
22d806c
1st pic
elainerocha Oct 21, 2020
bdf0396
Update and rename #modelo.md to svm.md
elainerocha Oct 21, 2020
9c6f442
Add files via upload
elainerocha Oct 21, 2020
797b3c0
Update svm.md
elainerocha Oct 21, 2020
8043397
Update svm.md
elainerocha Oct 21, 2020
abff0b0
Create #modelo.md
elainerocha Oct 21, 2020
431b692
Merge pull request #3 from deusanyjunior/master
elainerocha Nov 30, 2020
5ee89da
Update
elainerocha Nov 30, 2020
ecfff31
Update Modelo_de_Predição_Cães_Gatos_Final_20201129.png
elainerocha Nov 30, 2020
4cd89de
Update Modelo_de_Predição_Cães_Gatos_Final_20201129.ipynb
elainerocha Nov 30, 2020
99a1476
Update Modelo_de_Predição_Cães_Gatos_Final_20201129.ipynb
elainerocha Nov 30, 2020
72d49ac
Update Modelo_de_Predição_Cães_Gatos_Final_20201129.ipynb
elainerocha Nov 30, 2020
75bd688
Merge branch 'master' of https://github.com/elainerocha/curso-fiot
HackEduca Feb 2, 2021
21dd894
Merge pull request #4 from deusanyjunior/master
elainerocha Feb 3, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion 5-tratamentodedados/opcoes/#modelo.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,4 +22,4 @@ Classificação de regularidades em padrão de navegação.

## Referências

[Inferir](inferir.com.br)
[Inferir](inferir.com.br)
Binary file added 5-tratamentodedados/opcoes/imgs/SVM_pic1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 5-tratamentodedados/opcoes/imgs/svm_pic2.jpeg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
36 changes: 36 additions & 0 deletions 5-tratamentodedados/opcoes/svm.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Algoritmo (SVM - Support Vector Machine - Máquina de Vetores de Suporte

- Tipo de aprendizado: Não-supervisionado
- Subcategoria: Classificação
- Autoria: AT&T Bell Laboratories por Vapnik (Boser et al., 1992, Guyon et al., 1993, Vapnik et al., 1997)

## Descrição
Uma máquina de vetores de suporte (SVM, do inglês: support vector machine) é um conceito na ciência da computação para um conjunto de métodos de aprendizado supervisionado que analisam os dados e reconhecem padrões, usado para classificação e análise de regressão.
Em um base de dados, cada item é marcado como pertencente a uma de duas categorias, um algoritmo de treinamento do SVM constrói um modelo que atribui novos exemplos a uma categoria ou outra. Um modelo SVM é uma representação de exemplos como pontos no espaço, mapeados de maneira que os exemplos de cada categoria sejam divididos por um espaço claro que seja tão amplo quanto possível. Os novos exemplos são então mapeados no mesmo espaço e preditos como pertencentes a uma categoria baseados em qual o lado do espaço eles são colocados.

![SVM](imgs/svm_pic2.jpeg)

### Onde é usado (tecnicamente)
É utilizado para agrupar dados de acordo com características pré-definidas, como clientes, animais, situações, etc...

### Como é utilizado

É necessário um conjunto de dados. Esse conjunto de dados deve ser classificado de acordo com certas características.

![SVM](imgs/SVM_pic1.png)

Na figura acima é possível observar que há animal onde uma característica está resente (1) e onde ela é ausente (0).
O animal que não tem pelo longo, possui pernas curtas e não faz late - (0,1,0) - é um porco, de acordo com o modeo treinado.


### Exemplos de caso de uso

Pode ser utilizado na criação de jogos interativos, bem como em bancos e operadoras de cartões de crédito.
Em bancos, pode por exemplo, agrupar clientes por determinadas caracteríticas e dessa forma medir o risco de liberar empréstimos ou mesmo incentivar o empréstimos, uma vez identificado que o risco de pagamento é baixo.

## Referências

[Wikipedia](https://en.wikipedia.org/wiki/Support_vector_machine)
[Alura](https://www.alura.com.br/conteudo/machine-learning-introducao-a-classificacao-com-sklearn)


Binary file not shown.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"loss": [0.6938153505325317, 0.6932399868965149, 0.6938669085502625, 0.6917318105697632, 0.6920732259750366, 0.6932397484779358, 0.6926115155220032, 0.6906647682189941, 0.6912206411361694, 0.6907026767730713, 0.6893436312675476, 0.6888017058372498, 0.6872077584266663, 0.683907687664032, 0.6840918064117432, 0.6832371354103088, 0.6798744797706604, 0.6790352463722229, 0.6804038286209106, 0.6767991185188293, 0.6756863594055176, 0.6730856895446777, 0.6671010851860046, 0.665082573890686, 0.6679370999336243, 0.6721678972244263, 0.6657306551933289, 0.6635851860046387, 0.6646104454994202, 0.6613792181015015, 0.6594070196151733, 0.6534206867218018, 0.6551433205604553, 0.660881757736206, 0.6565631031990051, 0.6580579876899719, 0.649665117263794, 0.6603170037269592, 0.6588901877403259, 0.6565418243408203, 0.65547114610672, 0.6478790640830994, 0.648658275604248, 0.6426434516906738, 0.6492976546287537, 0.6444259881973267, 0.6460660696029663, 0.6456705927848816, 0.6441420316696167, 0.6452175974845886, 0.6490610837936401, 0.6348488330841064, 0.6390447020530701, 0.6425137519836426, 0.6391306519508362, 0.6395324468612671, 0.6434493660926819, 0.6389472484588623, 0.6385338306427002, 0.6401364207267761, 0.6451132893562317, 0.6423800587654114, 0.6363660097122192, 0.6242631077766418, 0.6385027170181274, 0.6369482278823853, 0.6326127648353577, 0.6333017945289612, 0.6273999810218811, 0.6300185322761536, 0.6271544694900513, 0.6295047998428345, 0.6277284026145935, 0.6242095828056335, 0.6210025548934937, 0.6298885345458984, 0.629578173160553, 0.6258786916732788, 0.615506649017334, 0.6252832412719727, 0.6260844469070435, 0.6085600256919861, 0.6139059066772461, 0.6189471483230591, 0.6193994283676147, 0.6037376523017883, 0.6186598539352417, 0.6023947596549988, 0.6170749664306641, 0.6071377992630005, 0.6180769205093384, 0.6276103854179382, 0.604117751121521, 0.6134619116783142, 0.5969749093055725, 0.6076076030731201, 0.6074114441871643, 0.6058424711227417, 0.607340931892395, 0.6001052260398865, 0.606904923915863, 0.6123360395431519, 0.6066787838935852, 0.6043095588684082, 0.6064679026603699, 0.6039469242095947, 0.5937719345092773, 0.6039484739303589, 0.5980870127677917, 0.6015657782554626, 0.5956326127052307, 0.5908892154693604, 0.5960692167282104, 0.6005294322967529, 0.5931046009063721, 0.597353458404541, 0.5968208909034729, 0.5963035225868225, 0.5839217901229858, 0.5928019881248474, 0.5931220650672913, 0.5786757469177246, 0.5908159613609314, 0.5797926783561707, 0.6001683473587036, 0.5884414315223694, 0.5809586048126221, 0.5863114595413208, 0.5764123201370239, 0.5893463492393494, 0.5998910069465637, 0.5819005966186523, 0.5819501876831055, 0.5799407958984375, 0.5813426375389099, 0.5748599767684937, 0.5773084759712219, 0.5754162669181824, 0.5682666897773743, 0.577674150466919, 0.5821532011032104, 0.5723626613616943, 0.5818553566932678, 0.5756199955940247, 0.5624701976776123, 0.5756937265396118, 0.5933184623718262, 0.576445460319519, 0.5721213221549988, 0.567246675491333], "accuracy": [0.4959999918937683, 0.5040000081062317, 0.5009999871253967, 0.527999997138977, 0.5120000243186951, 0.49799999594688416, 0.5149999856948853, 0.531000018119812, 0.5120000243186951, 0.5419999957084656, 0.5410000085830688, 0.5550000071525574, 0.5529999732971191, 0.5839999914169312, 0.5529999732971191, 0.5600000023841858, 0.5630000233650208, 0.5759999752044678, 0.5550000071525574, 0.5730000138282776, 0.5799999833106995, 0.593999981880188, 0.6079999804496765, 0.6000000238418579, 0.5950000286102295, 0.5830000042915344, 0.5929999947547913, 0.6050000190734863, 0.6079999804496765, 0.6100000143051147, 0.6200000047683716, 0.6110000014305115, 0.6019999980926514, 0.5920000076293945, 0.5979999899864197, 0.6190000176429749, 0.6169999837875366, 0.6110000014305115, 0.5950000286102295, 0.6069999933242798, 0.6240000128746033, 0.625, 0.6209999918937683, 0.6240000128746033, 0.5960000157356262, 0.6240000128746033, 0.6119999885559082, 0.6050000190734863, 0.6309999823570251, 0.6349999904632568, 0.621999979019165, 0.6290000081062317, 0.6230000257492065, 0.609000027179718, 0.625, 0.6169999837875366, 0.6389999985694885, 0.6159999966621399, 0.6159999966621399, 0.6370000243186951, 0.6110000014305115, 0.597000002861023, 0.6290000081062317, 0.6420000195503235, 0.6159999966621399, 0.6340000033378601, 0.6340000033378601, 0.652999997138977, 0.6520000100135803, 0.6399999856948853, 0.6320000290870667, 0.6389999985694885, 0.640999972820282, 0.6389999985694885, 0.6420000195503235, 0.6449999809265137, 0.6399999856948853, 0.6570000052452087, 0.6620000004768372, 0.6600000262260437, 0.6480000019073486, 0.6700000166893005, 0.6660000085830688, 0.6639999747276306, 0.6669999957084656, 0.6639999747276306, 0.6690000295639038, 0.6800000071525574, 0.6510000228881836, 0.6650000214576721, 0.6510000228881836, 0.6370000243186951, 0.671999990940094, 0.652999997138977, 0.6740000247955322, 0.6679999828338623, 0.6620000004768372, 0.671999990940094, 0.6669999957084656, 0.6740000247955322, 0.6690000295639038, 0.6579999923706055, 0.6919999718666077, 0.6779999732971191, 0.675000011920929, 0.671999990940094, 0.6919999718666077, 0.6729999780654907, 0.6710000038146973, 0.6740000247955322, 0.6759999990463257, 0.675000011920929, 0.6759999990463257, 0.6639999747276306, 0.6840000152587891, 0.6850000023841858, 0.6800000071525574, 0.6819999814033508, 0.6990000009536743, 0.6790000200271606, 0.675000011920929, 0.6919999718666077, 0.6940000057220459, 0.7059999704360962, 0.6679999828338623, 0.6740000247955322, 0.703000009059906, 0.6930000185966492, 0.6880000233650208, 0.6809999942779541, 0.671999990940094, 0.7009999752044678, 0.6940000057220459, 0.6850000023841858, 0.6890000104904175, 0.6909999847412109, 0.6859999895095825, 0.6990000009536743, 0.7009999752044678, 0.6890000104904175, 0.6890000104904175, 0.6899999976158142, 0.6830000281333923, 0.6930000185966492, 0.722000002861023, 0.7070000171661377, 0.6919999718666077, 0.7020000219345093, 0.6880000233650208, 0.6830000281333923], "val_loss": [0.6925848126411438, 0.6925768256187439, 0.6923720836639404, 0.6914757490158081, 0.6920095682144165, 0.6933373212814331, 0.6916759610176086, 0.6921571493148804, 0.6921760439872742, 0.6918462514877319, 0.6921849846839905, 0.6921759843826294, 0.6907989978790283, 0.6875397562980652, 0.6884576678276062, 0.6866137981414795, 0.6890182495117188, 0.6846367716789246, 0.683601438999176, 0.6833406686782837, 0.6775537729263306, 0.681607723236084, 0.6774548292160034, 0.6854206919670105, 0.6946430206298828, 0.6802008748054504, 0.6846515536308289, 0.6687275767326355, 0.6680158972740173, 0.6806058287620544, 0.6715648174285889, 0.6567485928535461, 0.6964607238769531, 0.6863332986831665, 0.6748144030570984, 0.6713153123855591, 0.656955897808075, 0.6557924151420593, 0.6894596219062805, 0.6584388613700867, 0.6573214530944824, 0.6510104537010193, 0.6765373945236206, 0.6591345071792603, 0.6834930181503296, 0.6662213206291199, 0.6656945943832397, 0.663710355758667, 0.658643364906311, 0.6789160370826721, 0.6563933491706848, 0.6605673432350159, 0.6470015048980713, 0.6869158744812012, 0.6528187394142151, 0.6769905686378479, 0.6828964352607727, 0.6616427898406982, 0.6836190819740295, 0.6944609880447388, 0.6566808819770813, 0.6432089805603027, 0.6705275774002075, 0.6657485961914062, 0.6385076642036438, 0.652453601360321, 0.6713071465492249, 0.6915828585624695, 0.6888643503189087, 0.6630004048347473, 0.6311242580413818, 0.6882492303848267, 0.6277236938476562, 0.6556596159934998, 0.6320388913154602, 0.653077244758606, 0.6480952501296997, 0.6454241871833801, 0.6376981139183044, 0.6594197750091553, 0.63448166847229, 0.6374096870422363, 0.6369625926017761, 0.6754502654075623, 0.6925478577613831, 0.6422438621520996, 0.6580965518951416, 0.6402007341384888, 0.6826671361923218, 0.6463241577148438, 0.6651990413665771, 0.6664199829101562, 0.6633840203285217, 0.6285037994384766, 0.6617960929870605, 0.6432903409004211, 0.6466565728187561, 0.654344916343689, 0.7038261294364929, 0.6390556693077087, 0.6400721669197083, 0.6245300769805908, 0.6474902629852295, 0.6325934529304504, 0.6799272894859314, 0.6896408796310425, 0.6411320567131042, 0.7118866443634033, 0.6400541067123413, 0.6413509845733643, 0.6409580111503601, 0.654452383518219, 0.651374876499176, 0.6463227868080139, 0.6296985745429993, 0.6557475328445435, 0.6278873085975647, 0.6828165650367737, 0.6793790459632874, 0.6776823997497559, 0.6756333708763123, 0.7215322852134705, 0.6336554884910583, 0.6678069233894348, 0.6778823733329773, 0.6531234979629517, 0.713472843170166, 0.612546980381012, 0.7441208362579346, 0.6136167645454407, 0.6456120014190674, 0.6556147933006287, 0.6029419898986816, 0.6191391944885254, 0.6452768445014954, 0.6521549820899963, 0.655497133731842, 0.6454778909683228, 0.6919372081756592, 0.6487451195716858, 0.6580005884170532, 0.6277798414230347, 0.646725058555603, 0.7004092335700989, 0.6607050895690918, 0.6826672554016113, 0.5919895172119141, 0.6011312007904053, 0.5943012833595276, 0.7006886005401611], "val_accuracy": [0.5, 0.4950000047683716, 0.5149999856948853, 0.5799999833106995, 0.5099999904632568, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.6150000095367432, 0.5199999809265137, 0.550000011920929, 0.5149999856948853, 0.550000011920929, 0.5550000071525574, 0.550000011920929, 0.6100000143051147, 0.550000011920929, 0.5550000071525574, 0.5350000262260437, 0.5149999856948853, 0.550000011920929, 0.5450000166893005, 0.6000000238418579, 0.5799999833106995, 0.5450000166893005, 0.5699999928474426, 0.6499999761581421, 0.5400000214576721, 0.5400000214576721, 0.550000011920929, 0.5450000166893005, 0.6100000143051147, 0.6299999952316284, 0.5299999713897705, 0.5950000286102295, 0.5950000286102295, 0.6549999713897705, 0.5649999976158142, 0.5950000286102295, 0.5450000166893005, 0.5699999928474426, 0.5600000023841858, 0.5699999928474426, 0.5849999785423279, 0.5550000071525574, 0.5799999833106995, 0.5950000286102295, 0.6150000095367432, 0.5450000166893005, 0.574999988079071, 0.5400000214576721, 0.5550000071525574, 0.6000000238418579, 0.5699999928474426, 0.550000011920929, 0.6000000238418579, 0.625, 0.5550000071525574, 0.5849999785423279, 0.625, 0.5849999785423279, 0.5600000023841858, 0.5600000023841858, 0.5550000071525574, 0.5849999785423279, 0.6299999952316284, 0.5849999785423279, 0.6150000095367432, 0.6000000238418579, 0.6150000095367432, 0.5849999785423279, 0.574999988079071, 0.6200000047683716, 0.6150000095367432, 0.5649999976158142, 0.6150000095367432, 0.5950000286102295, 0.6200000047683716, 0.5550000071525574, 0.5600000023841858, 0.6200000047683716, 0.5899999737739563, 0.5950000286102295, 0.5849999785423279, 0.6000000238418579, 0.574999988079071, 0.6000000238418579, 0.5950000286102295, 0.6050000190734863, 0.6050000190734863, 0.6100000143051147, 0.6000000238418579, 0.5899999737739563, 0.5699999928474426, 0.5950000286102295, 0.6100000143051147, 0.6200000047683716, 0.574999988079071, 0.6150000095367432, 0.5799999833106995, 0.5849999785423279, 0.6150000095367432, 0.5699999928474426, 0.625, 0.6150000095367432, 0.6100000143051147, 0.6000000238418579, 0.6150000095367432, 0.5649999976158142, 0.6299999952316284, 0.6050000190734863, 0.6499999761581421, 0.5950000286102295, 0.5950000286102295, 0.5849999785423279, 0.5699999928474426, 0.5699999928474426, 0.6050000190734863, 0.6100000143051147, 0.5699999928474426, 0.5950000286102295, 0.5799999833106995, 0.6449999809265137, 0.550000011920929, 0.6700000166893005, 0.5950000286102295, 0.5899999737739563, 0.6299999952316284, 0.625, 0.6050000190734863, 0.6150000095367432, 0.6150000095367432, 0.5950000286102295, 0.6100000143051147, 0.6050000190734863, 0.6150000095367432, 0.6299999952316284, 0.6050000190734863, 0.5849999785423279, 0.5899999737739563, 0.6100000143051147, 0.6449999809265137, 0.6700000166893005, 0.6600000262260437, 0.5799999833106995]}
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.