Skip to content

Commit

Permalink
Changed ontology generation (addedd NN)
Browse files Browse the repository at this point in the history
  • Loading branch information
marc-maynou committed Jul 15, 2024
1 parent fed1b23 commit 893fa12
Show file tree
Hide file tree
Showing 4 changed files with 123 additions and 16 deletions.
20 changes: 4 additions & 16 deletions Modules/IntentSpecification2WorkflowGenerator/api/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,14 +167,8 @@ def get_custom_ontology(path):
graph = get_graph_xp()
ontologies = [
r'ontologies/tbox.ttl',
# r'ontologies/cbox.ttl',
# r'ontologies/abox.ttl',

# r'ontologies/cbox_new.ttl',
# r'ontologies/abox_new.ttl',

r'ontologies/cbox_new_2.ttl',
r'ontologies/abox_new_2.ttl',
r'ontologies/cbox.ttl',
r'ontologies/abox.ttl',
path
]
for o in ontologies:
Expand All @@ -187,14 +181,8 @@ def get_custom_ontology_only_problems():
graph = get_graph_xp()
ontologies = [
r'ontologies/tbox.ttl',
# r'ontologies/cbox.ttl',
# r'ontologies/abox.ttl',

# r'ontologies/cbox_new.ttl',
# r'ontologies/abox_new.ttl',

r'ontologies/cbox_new_2.ttl',
r'ontologies/abox_new_2.ttl',
r'ontologies/cbox.ttl',
r'ontologies/abox.ttl',
]
for o in ontologies:
graph.parse(o, format="turtle")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ def add_algorithms(cbox):
(cb.NaiveBayes, cb.Classification),
(cb.SVM, cb.Classification),
(cb.KNN, cb.Classification),
(cb.NN, cb.Classification),

# Anomaly Detection
(cb.OneClassSVM, cb.AnomalyDetection),
Expand Down Expand Up @@ -110,6 +111,7 @@ def add_models(cbox):
'DecisionTreeModel',
'NormalizerModel',
'MissingValueModel',
'NNModel',
]

cbox.add((cb.Model, RDFS.subClassOf, tb.Data))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from .normalization import *
from .decision_tree import *
from .svm import *
from .nn import *
from .missing_values import *
from .csv_io import *

Expand All @@ -18,6 +19,8 @@
missing_value_applier_implementation,
csv_reader_implementation,
csv_writer_implementation,
nn_learner_implementation,
nn_predictor_implementation,
]

components = [
Expand All @@ -40,4 +43,9 @@
missing_value_applier_component,
csv_reader_local_component,
csv_writer_local_component,
feedforward_learner_component,
recurrent_learner_component,
convolutional_learner_component,
lstm_learner_component,
nn_predictor_component,
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
from common import *
from .knime_implementation import KnimeImplementation, KnimeBaseBundle, KnimeParameter
from ..core import *

nn_learner_implementation = KnimeImplementation(
name='NN Learner',
algorithm=cb.NN,
parameters=[
KnimeParameter("Class column", XSD.string, "$$LABEL$$", 'classcol'),
KnimeParameter("NN type", XSD.string, None, 'nn_type'),
],
input=[
[cb.LabeledTabularDatasetShape, cb.NormalizedTabularDatasetShape, cb.NonNullTabularDatasetShape],
],
output=[
cb.NNModel,
],
implementation_type=tb.LearnerImplementation,
knime_node_factory='org.knime.base.node.mine.svm.predictor2.SVMPredictorNodeFactory',
knime_bundle=KnimeBaseBundle,
)

feedforward_learner_component = Component(
name='FeedForward NN Learner',
implementation=nn_learner_implementation,
overriden_parameters=[
('NN type', 'FeedForward'),
],
exposed_parameters=[
'Class column'
],
transformations=[
],
)

recurrent_learner_component = Component(
name='Recurrent NN Learner',
implementation=nn_learner_implementation,
overriden_parameters=[
('NN type', 'Recurrent'),
],
exposed_parameters=[
'Class column'
],
transformations=[
],
)

convolutional_learner_component = Component(
name='Convolutional NN Learner',
implementation=nn_learner_implementation,
overriden_parameters=[
('NN type', 'Convolutional'),
],
exposed_parameters=[
'Class column'
],
transformations=[
],
)

lstm_learner_component = Component(
name='LSTM NN Learner',
implementation=nn_learner_implementation,
overriden_parameters=[
('NN type', 'LSTM'),
],
exposed_parameters=[
'Class column'
],
transformations=[
],
)

nn_predictor_implementation = KnimeImplementation(
name='NN Predictor',
algorithm=cb.NN,
parameters=[
KnimeParameter("Prediction column name", XSD.string, "Prediction ($$LABEL$$)", 'prediction column name'),
KnimeParameter("Change prediction", XSD.boolean, False, 'change prediction'),
KnimeParameter("Add probabilities", XSD.boolean, False, 'add probabilities'),
KnimeParameter("Class probability suffix", XSD.string, "", 'class probability suffix'),
],
input=[
cb.NNModel,
[cb.NormalizedTabularDatasetShape, cb.NonNullTabularDatasetShape]
],
output=[
cb.LabeledTabularDatasetShape,
],
implementation_type=tb.ApplierImplementation,
counterpart=nn_learner_implementation,
knime_node_factory='org.knime.base.node.mine.svm.predictor2.SVMPredictorNodeFactory',
knime_bundle=KnimeBaseBundle,
)

nn_predictor_component = Component(
name='NN Predictor',
implementation=nn_predictor_implementation,
transformations=[

],
counterpart=[
feedforward_learner_component,
recurrent_learner_component,
convolutional_learner_component,
lstm_learner_component
],
)

0 comments on commit 893fa12

Please sign in to comment.